МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 01.03.02 Прикладная математика и информатика, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Развитие прикладных методов математики

Направление подготовки: 01.03.02 Прикладная математика и

информатика

Направленность (профиль): Математическое моделирование и системный

анализ

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5665

Подписал: заведующий кафедрой Нутович Вероника

Евгеньевна

Дата: 10.04.2025

1. Общие сведения о дисциплине (модуле).

Целями освоения дисциплины (модуля) являются:

- изучение анализа закономерностей, происходящих в окружающих явлениях при помощи современных методов прикладной математики;
- изучение развития современных методов, применяемых учеными в области прикладной математики;
- обеспечить студентов прочными знаниями в области проблем разрешимости/неразрешимости, законности применения тех или иных методов в задачах математики и на стыке математики и информатики, необходимых для профессиональной деятельности бакалавров.

Задачами дисциплины (модуля) являются:

- изучение опыта применения конкретных методов прикладной математики и для решения прикладных задач и приобретение навыков практического решения задач в качестве исследователя;
- формирование у студентов навыков критического подхода, применения различных методов для исследования той или иной задачи.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ПК-4** Уметь ставить цели создания системы, разрабатывать концепцию системы и требования к ней, выполнять декомпозицию требований к системе;
- **УК-1** Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- основной набор проблем, возникающих при решении прикладных задач математики;
- современное состояние и тенденции развития основных исследований в области прикладной математики.

Уметь:

- использовать современные достижения в той или иной области прикладной математики и применять их для конкретных задач;

- определять разрешимость/неразрешимость той или иной задачи в области математики или на стыке математики и информатики на основании полученных знаний.

Владеть:

- навыками анализа и решения задач современной прикладной математики;
- навыками использования специализированного программного обеспечения например, математических пакетов (Matlab, Mathematica, Maple и др.)
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 3 з.е. (108 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Turn vinofere vi poviganič	Количество часов	
Тип учебных занятий		Семестр №7
Контактная работа при проведении учебных занятий (всего):	64	64
В том числе:		
Занятия лекционного типа	32	32
Занятия семинарского типа	32	32

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 44 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.

4. Содержание дисциплины (модуля).

4.1. Занятия лекционного типа.

No				
Π/Π	Тематика лекционных занятий / краткое содержание			
1	Предмет прикладной математики.			
	Рассматриваемые вопросы:			
	- понятие математической модели;			
	- общая схема применения математики, требование адекватности.			
2	Типы математических моделей			
	Рассматриваемые вопросы:			
	- структурные и функциональные модели;			
	- линейные и нелинейные модели;			
	- детерминированные и вероятностные модели.			
3	Анализ моделей			
	Рассматриваемые вопросы:			
	- анализ чевствительности параметров модели;			
	- упрощение уравнений;			
	- контроль размерности;			
	- верификация модели.			
4	Типы математических моделей			
	Рассматриваемые вопросы:			
	- модели с функционалом экстремум с конечным числом степеней свободы;			
	- модели с бесконечным числом степеней свободы.			
5	Методы исследования математических моделей			
	Рассматриваемые вопросы:			
	- метод малого параметра;			
	- асимптотические разложения;			
	- метод бегущих волн.			
6	Модели биологии			
	Рассматриваемые вопросы:			
	- модель «хищник-жертва»;			
	- модели роста клеток.			
7	Модели экологии			
	Рассматриваемые вопросы:			
	- модель взаимодействия загрязнения с окружающей средой.			
8	Модели, построенные на основе теории вероятностей			
	Рассматриваемые вопросы:			
	- марковские процессы с непрерывным временм и дискретными состояниями;			
	- модели финансовой математики;			
	- игровые модели.			

4.2. Занятия семинарского типа.

Практические занятия

№	Тематика практических занятий/краткое содержание		
Π/Π	тематика практических запятни/ краткое содержание		
1	Типы математических моделей		
	В результате работы на практическом занятии студент получает навык:		
	- составления и идентификации различных типов математических моделей;		
	- сравнения линейного и нелинейного отображения условий моделирования;		
	- введения новых безразмерные переменные.		
2	Анализ математических моделей		
	В результате работы на практическом занятии студент получает навыки проводить анализ		
	возможных упрощений модели, контроля размерности, верификации модели.		
3	Построение математической модели		
	В результате работы на практическом занятии студент получает навык:		
	- на конкретных примерах моделей механики и физики проводить анализ возможных упрощений		
	модели;		
	- проводить анализ чувствительности входящих параметров;		
	- исследовать возможность применения ассимптотических методов и метода малого параметра.		
4	Методы исследования		
	В результате работы на практическом занятии студент получает навыки применения различных		
	методов построения решений конкретных моделей и исследования возможности применения		
	ассимптотических методов и метода малого параметра.		
5	Методы построения решений		
	В результате работы на практическом занятии студент получает навыки проведения анализ		
	чувствительности решения к входящиим параметрам, получения интегрального представление		
	решения, введения автомодельных переменных, получения решения в форме бегущих волн,		
6	получения обобщенных решений.		
0	Фазовый портрет системы		
	В результате работы на практическом занятии студент получает навык применения метода фазового портрета.		
7	Методы математической физики		
/	В результате работы на практическом занятии студент получает навыки применения дельта-		
	функции, метода Галеркина, метода конечных элементов, итерационных методов.		
8	Модели биологии и экологии		
0			
	В результате работы на практическом занятии студент получает навыки применения моделей		
	«хищник-жертва», модели роста клеток, модели взаимодействия загрязнения с окружающей средой.		

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы	
1	Изучение учебной литературы.	
2	Подготовка к практическим занятиям.	
3	Выполнение курсового проекта.	
4	Подготовка к промежуточной аттестации.	
5	Подготовка к текущему контролю.	

4.4. Примерный перечень тем курсовых проектов

1. Автомодельные решения уравнения теплпроводности.

- 2. Осреднение быстро колеблющщихся зависимостей.
- 3. Метод малого параметра в задачах механики.
- 4. Метод бегущих волн решения уравнения Фишера-Колмогорова.
- 5. Метод введения безразмерных переменных в задачах механики и физики.
 - 6. Прямые методы решения экстемальных задач.
 - 7. Метод Галеркина решения краевых хадач математической физики.
 - 8. Вариационны методы в линейной алгебре.
- 9. Метод динамического программирования в дискретных задачах оптимизации.
- 10. Моделирование процессов с помощью марковских процессов с непреравным временм и дискретными состояниями.
- 11. Принцип максимума Понтрягина и его применение в задачах управления механическими системами.
 - 12. Гамильтоновы системы и их приложение к задачам механики.
- 13. Метод динамического программирования в задачах управления движением.
 - 14. Стохастические дифференциальные уравнения. Дифференциал Ито.
 - 15. Модель Гаузе конкурентного исключения видов.
 - 16. Математические модели терапии больных клеток.
- 17. Дельта функция Дирака и ее применение в задачах математической физики.
 - 18. Методы анализа чувствительности в задачах механики и физики.
- 5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Братусь А.С., Новожилов А.С., Платонов П.С.	https://znanium.ru/read?id=38119
	Динамические системы и модели биологии. – М:	(дата обращения: 25.06.2025)
	Физматлит, 2010. – 400 с., ISBN 978-5-9221-1192-8	
2	Ризниченко, Г. Ю. Математическое моделирование	https://urait.ru/bcode/537454
	биологических процессов. Модели в биофизике и	(дата обращения: 19.04.2024).
	экологии : учебное пособие для вузов / Г. Ю.	
	Ризниченко. — 2-е изд., перераб. и доп. — Москва:	
	Издательство Юрайт, 2024. — 181 с. — (Высшее	
	образование). — ISBN 978-5-534-07037-8.	

3	Ризниченко, Г. Ю. Математические методы в	https://urait.ru/bcode/537453
	биологии и экологии. Биофизическая динамика	(дата обращения: 19.04.2024).
	продукционных процессов в 2 ч. Часть 1 : учебник	
	для вузов / Г. Ю. Ризниченко, А. Б. Рубин. — 3-е	
	изд., перераб. и доп. — Москва : Издательство	
	Юрайт, 2024. — 210 с. — (Высшее образование). —	
	ISBN 978-5-534-07872-5.	
4	Ризниченко, Г. Ю. Математические методы в	https://urait.ru/bcode/538019
	биологии и экологии. Биофизическая динамика	(дата обращения: 19.04.2024).
	продукционных процессов в 2 ч. Часть 2 : учебник	
	для вузов / Г. Ю. Ризниченко, А. Б. Рубин. — 3-е	
	изд., перераб. и доп. — Москва : Издательство	
	Юрайт, 2024. — 185 с. — (Высшее образование). —	
	ISBN 978-5-534-07874-9.	
5	Рейзлин, В. И. Математическое моделирование:	https://urait.ru/bcode/537305
	учебное пособие для вузов / В. И. Рейзлин. — 2-е	(дата обращения: 27.04.2024).
	изд., перераб. и доп. — Москва : Издательство	
	Юрайт, 2024. — 126 с. — (Высшее образование). —	
	ISBN 978-5-534-08475-7	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Научно-техническая библиотека РУТ (МИИТ) (http:/library.miit.ru).

Образовательная платформа «Юрайт» (https://urait.ru/).

Общие информационные, справочные и поисковые системы «Консультант Плюс», «Гарант».

Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/).

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Microsoft Internet Explorer (или другой браузер).

Операционная система Microsoft Windows.

Microsoft Office.

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебные аудитории для проведения учебных занятий, оснащенные компьютерной техникой и наборами демонстрационного оборудования.

9. Форма промежуточной аттестации:

Зачет в 7 семестре.

Курсовой проект в 7 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

профессор, профессор, д.н. кафедры «Цифровые технологии управления транспортными процессами»

А.С. Братусь

Согласовано:

Заведующий кафедрой ЦТУТП

В.Е. Нутович

Председатель учебно-методической

комиссии Н.А. Андриянова