министерство транспорта российской федерации федеральное государственное автономное образовательное учреждение высшего образования «РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА»

Кафедра «Судовые энергетические установки» Академии водного

транспорта

АННОТАЦИЯ К РАБОЧЕЙ ПРОГРАММЕ ДИСЦИПЛИНЫ

«Развитие судовых тепловых машин и энергетических установок»

Специальность: 26.05.06 – Эксплуатация судовых

энергетических установок

Специализация: Эксплуатация судовых энергетических установок

Квалификация выпускника: Инженер-судомеханик

 Форма обучения:
 очная

 Год начала подготовки
 2020

1. Цели освоения учебной дисциплины

Целями освоения дисциплины «Развитие судовых тепловых машин и энергетических установок» являются:

- ввести студента в избранную область его будущей профессиональной деятельности;
- показать значение энергетики в развитии человеческого общества и обеспечении научнотехнического прогресса;
- познакомить с историей развития мировой и отечественной энергетики;
- определить роль теплоэнергетики в общем энергетическом балансе мира и России;
- отразить основные проблемы и перспективы развития энергетики;
- дать классификацию возможных для использования традиционных и альтернативных источников энергии;
- показать пути внедрения в энергобаланс региона нетрадиционных возобновляемых источников энергии;
- научить самостоятельному поиску информации для научной, учебной и профессиональной деятельности.

2. Место учебной дисциплины в структуре ОП ВО

Учебная дисциплина "Развитие судовых тепловых машин и энергетических установок" относится к блоку 1 "Дисциплины (модули)" и входит в его вариативную часть.

3. Планируемые результаты обучения по дисциплине (модулю), соотнесенные с планируемыми результатами освоения образовательной программы

Процесс изучения дисциплины направлен на формирование следующих компетенций:

ПК-1	Способен нести машинную вахту на основе установленных принципов
	несения машинных вахт
ПК-5	Способен выполнять безопасные и аварийные процедуры эксплуатации
	механизмов двигательной установки, включая системы управления
ПК-53	Способен использовать ручные инструменты, станки и измерительные
	инструменты для изготовления деталей и ремонта на судне
ПК-55	Способен выполнить техническое обслуживание и ремонт судовых
	механизмов и оборудования
ПК-57	Способен читать схемы трубопроводов, гидравлических и
	пневматических систем
ПК-61	Способен читать электрические и простые электронные схемы
ПК-63	Способен устанавливать причины отказов судового оборудования,
	определять и осуществлять мероприятия по их предотвращению

4. Общая трудоемкость дисциплины составляет

2 зачетные единицы (72 ак. ч.).

5. Образовательные технологии

Для реализации познавательной и творческой активности обучающихся в учебном процессе используются современные образовательные технологии, дающие возможность повышать качество образования, более эффективно использовать аудиторное время. В процессе обучения используются методы классического и проблемного обучения. 100% занятий семинарского типа представляют собой занятия с элементами проблемного обучения. Лекции проводятся в традиционной классно-урочной организационной форме,

по типу управления познавательной деятельностью. Практические занятия организованы с использованием технологий развивающего обучения, разбор конкретных ситуаций. Для контроля знаний проводятся опросы, выполнение курсовой работы. При изучении курса предусмотрены различные формы контроля усвоения материала: в конце практических занятий (семинарского типа) проводятся опросы (письменные и устные) с целью выявления уровня усвоения материала дисциплины, возможность написания исследовательской работы (доклада, реферата и т.д.).

6. Содержание дисциплины (модуля), структурированное по темам (разделам)

РАЗДЕЛ 1

Судовая энергетичекая установка

Назначение, классификация, состав судовых (корабельных) энергетических установок (СЭУ). Дизельные, паротурбинные, газотурбинные, атомные и комбинированные СЭУ. История развития, классификация и состав СЭУ. Газотурбинные, паровые, атомные СЭУ.

РАЗДЕЛ 2

Судовая пропульсивная установка

Современные ДЭУ речных и река-море судов. Заводы – производители. Главные показатели современных ДЭУ.

Мощность СЭУ (эмпирическая зависимость). Мощность СДВС (расчетная формула). Турбонаддув. Требования РРР к судовым дизелям (по частоте вращения).

РАЗДЕЛ 3

Автоматизация СЭУ

Управление энергетической установкой и её автоматизация.

Уровни автоматизации МКО.

РАЗДЕЛ 4

САПР СЭУ

Понятие САПР. Общие сведения о САD/САМ/САЕ-системах.

Применение систем автоматизированного проектирования при проектировании и создании судна. Прочностные расчеты. Примеры.

РАЗДЕЛ 5

Перспективы развития судовых энергетических установок

Основные сведения о перспективах развития судовых энергетических устано-вок.

Перспективные топлива.