МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы магистратуры по направлению подготовки 11.04.02 Инфокоммуникационные технологии и системы связи, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Распознавание и генерирование изображений

Направление подготовки: 11.04.02 Инфокоммуникационные

технологии и системы связи

Направленность (профиль): Инфокоммуникационные и нейросетевые

технологии передачи и анализа больших

данных

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 167783

Подписал: руководитель образовательной программы

Киселёва Анастасия Сергеевна

Дата: 31.07.2025

1. Общие сведения о дисциплине (модуле).

Целью освоения учебной дисциплины является формирование у обучающихся компетенций в соответствии с требованиями образовательного стандарта и ознакомление студентов с методами и алгоритмами, позволяющими эффективно анализировать, интерпретировать и создавать изображения с использованием современных технологий машинного обучения и компьютерного зрения.

Задачи дисциплины включают изучение основных принципов и алгоритмов обработки изображений, а также методов машинного обучения, применяемых в этой области. Студенты научатся разрабатывать и адаптировать модели для распознавания объектов, лиц и сцен на изображениях. Важной задачей является освоение технологий генерации изображений, таких как генеративные состязательные сети (GAN) и вариационные автокодировщики (VAE). Кроме того, студенты будут исследовать применение методов повышения качества изображений и их сегментации.

2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ПК-3 - Способен совершенствовать и разрабатывать новые методы, модели, алгоритмы, технологии и инструментальные средства работы с большими данными.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- основные принципы и алгоритмы обработки изображений, а также методы машинного обучения, используемые в компьютерном зрении.

Уметь:

- разрабатывать и адаптировать модели для распознавания объектов и генерации изображений, а также применять методы повышения качества и сегментации изображений.

Владеть:

- навыками программирования на Python и использовать библиотеки, для реализации проектов в области компьютерного зрения

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 4 з.е. (144 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Tura massar na pongani	Количество часов	
Тип учебных занятий		Семестр №1
Контактная работа при проведении учебных занятий (всего):	32	32
В том числе:		
Занятия семинарского типа	32	32

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 112 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

Не предусмотрено учебным планом

4.2. Занятия семинарского типа.

Практические занятия

No				
	Тематика практических занятий/краткое содержание			
П/П				
1	Введение в обработку изображений			
	Рассматриваемые вопросы:			
	Основные операции с изображениями (обрезка, изменение размера, поворот)			
	Применение фильтров для улучшения качества изображений			
2	Цветовые пространства и их преобразования.			
	Рассматриваемые вопросы:			
	RGB, HSV, LAB: что это и как использовать			
	Преобразование между цветовыми пространствами.			
3	Методы сегментации изображений.			
	Рассматриваемые вопросы:			
	Сегментация на основе порогов			
	Алгоритмы кластеризации (K-means, Mean Shift)			
4	Обнаружение краев и контуров.			
	Рассматриваемые вопросы:			
	Алгоритмы Канни и Собеля			
	Применение детекторов контуров для распознавания объектов			
5	Обработка и аугментация данных.			
	Рассматриваемые вопросы:			
	Методы аугментации изображений (вращение, отражение, изменение яркости)			
	Генерация обучающих выборок для глубокого обучения			
6	Введение в машинное обучение			
	Рассматриваемые вопросы:			
	Основы алгоритмов машинного обучения (линейная регрессия, SVM)			
	Применение алгоритмов для классификации изображений.			
7	Глубокое обучение в компьютерном зрении			
	Рассматриваемые вопросы:			
	Архитектуры нейронных сетей (CNN, RNN)			
	Основы работы с TensorFlow и Keras.			
8	Генеративные состязательные сети (GAN)			
	Рассматриваемые вопросы:			
	Архитектура GAN и принципы работы			
	Применение GAN для генерации изображений.			
9	Вариационные автокодировщики (VAE).			
	Рассматриваемые вопросы:			
	Основы VAE и их применение для генерации изображений			
	Сравнение VAE и GAN.			
10	Распознавание лиц.			
	Методы распознавания лиц (Haar Cascades, Dlib)			
	Применение глубоких нейронных сетей для распознавания лиц.			
11	Обнаружение объектов.			
	Рассматриваемые вопросы:			
	Алгоритмы YOLO и SSD			
	Практическое применение детекторов объектов на реальных данных.			
12	Сегментация семантических и инстанс-сегментаций.			
	Рассматриваемые вопросы:			
	Различия между семантической и инстанс-сегментацией			
	Использование моделей, таких как U-Net и Mask R-CNN.			
13	Улучшение качества изображений.			
13	Рассматриваемые вопросы:			
<u> </u>	и соематриваемые вопросы.			

No॒	Тематика практических занятий/краткое содержание	
п/п	тематика практи теских запитии краткое содержание	
	Методы суперразрешения изображений	
	Применение нейросетевых подходов для повышения качества.	
14	Работа с видео и потоковыми данными	
	Рассматриваемые вопросы:	
	Обработка видео в реальном времени	
	Применение алгоритмов распознавания объектов на видео.	
15	Этика и социальные аспекты компьютерного зрения	
	Рассматриваемые вопросы:	
	Обсуждение этических вопросов использования технологий распознавания	
	Влияние компьютерного зрения на общество.	
16	Итоговый проект	
	Рассматриваемые вопросы:	
	Разработка собственного проекта в области распознавания и генерации изображений	

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Самостоятельное изучение и конспектирование отдельных тем учебной
	литературы, связынных с разделами дисциплины
2	Работа с лекционным материалом
3	Подготовка к практическим занятиям
4	Подготовка к промежуточной аттестации.
5	Подготовка к текущему контролю.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№	Библиографическое описание	Место доступа
п/п		-
1	Селянкин, В. В. Компьютерное зрение. Анализ и	https://e.lanbook.com/book/276455
	обработка изображений / В. В. Селянкин. — 3-е	
	изд., стер. — Санкт-Петербург : Лань, 2023. — 152	
	c. — ISBN 978-5-507-45583-6.	
2	Шапиро, Л. Компьютерное зрение: учебное	https://e.lanbook.com/book/417998
	пособие / Л. Шапиро, Д. Стокман; перевод с	
	английского А. А. Богуславского под редакцией С.	
	М. Соколова. — 5-е изд. (эл.). — Москва :	
	Лаборатория знаний, 2024. — 763 с. — ISBN 978-	
	5-93208-725-1.	
3	Ненашев, В. А. Компьютерное зрение. Анализ,	https://e.lanbook.com/book/341057
	обработка и моделирование : учебное пособие / В.	
	А. Ненашев. — Санкт-Петербург : ГУАП, 2022. —	
	78 c. — ISBN 978-5-8088-1806-4.	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Информационный портал Научная электронная библиотека eLIBRARY.RU (www.elibrary.ru);

Единая коллекция цифровых образовательных ресурсов (http://window, edu.ru);

Научно-техническая библиотека РУТ (МИИТ) (http/library.miit.ru);

Поисковые системы «Яндекс» для доступа к тематическим информационным ресурсам;

Электронно-библиотечная система издательства «Лань» – http://e.lanbook.com/;

Электронно-библиотечная система ibooks.ru – http://ibooks.ru/;

Электронно-библиотечная система «УМЦ» – http://www.umczdt.ru/;

Электронно-библиотечная система «BOOK.ru» – http://www.book.ru/;

Электронно-библиотечная система «ZNANIUM.COM» – http://www.znanium.com/

- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).
 - 1. Операционная система windows microsoft office 2003 и выше;
- 2. Браузер Internet Explorer 8.0 и выше с установленным Adobe Flash player версии 10.3 и выше;
 - 3. Adobe acrobat.
- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебные аудитории для проведения учебных занятий, оснащенные компьютерной техникой и наборами демонстрационного оборудования.

9. Форма промежуточной аттестации:

Зачет в 1 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

профессор, профессор, д.н. Высшей

инженерной школы А.М. Завьялов

Согласовано:

Заместитель директора Б.В. Игольников

Руководитель образовательной

программы А.С. Киселёва

Председатель учебно-методической

д.В. Паринов