МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 11.03.02 Инфокоммуникационные технологии и системы связи, утвержденной директором РУТ (МИИТ) Игольниковым Б.В.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Распространение радиоволн

Направление подготовки: 11.03.02 Инфокоммуникационные

технологии и системы связи

Направленность (профиль): Системы мобильной связи и сетевые

технологии на транспорте

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

D подписи: 167783

Подписал: руководитель образовательной программы

Киселёва Анастасия Сергеевна

Дата: 18.12.2024

1. Общие сведения о дисциплине (модуле).

Целью освоения учебной дисциплины «Распространение радиоволн» является формирование у обучающихся компетенций в соответствии с требованиями образовательного стандарта и ознакомление студентов с основами макроскопической электродинамикии и методами анализа волноводных и колебательных систем.

Задачи дисциплины включают в себя приобретение обучающимися знаний, умений и навыков в области распространнния радиоволн, связанных с ними явлений и применении радиоволн для организации беспроводных систем связи.

2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ПК-9 - Способен эксплуатировать сети радиодоступа.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- основные законы распространения электромагнитных волн в различных средах, в том числе в направляющих системах.

Уметь:

- анализировать структуру электромагнитного поля, определять структуру электромагнитной волны по её классу и типу и наоборот.

Владеть:

- навыками расчёта основных параметров электромагнитных полей и волн.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 3 з.е. (108 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами,

привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Turn vinobin vy popistriji	Количество часов	
Тип учебных занятий		Семестр №4
Контактная работа при проведении учебных занятий (всего):	48	48
В том числе:		
Занятия лекционного типа	16	16
Занятия семинарского типа	32	32

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 60 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

No	Таматика пакционни ву запятий / кратков сопаручания			
Π/Π	Тематика лекционных занятий / краткое содержание			
1	Основные законы электромагнитного поля и уравнения Максвелла.			
	Рассматрвиаемые вопросы:			
	- уравнения Максвелла в интегральной и дифференциальной формах;			
	- энергетические характеристики и баланс энергии поля;			
	- граничные условия для векторов электромагнитного поля.			
2	Плоские электромагнитные волны.			
	Рассматрвиаемые вопросы:			
	- уравнение Гельмгольца;			
	- плоские волны и их характеристики;			
	- поляризация электромагнитных волн;			
	- электромагнитные волны в средах с частотной дисперсией;			
	- групповая скорость. Распространение электромагнитных волн в плазме, в анизотропных средах;			
	- падение плоских волн на границу раздела сред;			
	- полное внутреннее отражение;			
	- падение плоской электромагнитной волны на диэлектрическое полупространство с потерями;			
	- приближенные граничные условия Леонтовича.			

No				
п/п	Тематика лекционных занятий / краткое содержание			
3	Волноводы.			
	Рассматрвиаемые вопросы:			
	- прямоугольный и круглый металлические волноводы;			
	- критические частоты, дисперсионная характеристика волновода;			
	- структура силовых линий низших типов волн в волноводах;			
	- некоторые способы возбуждения прямоугольных и круглых волноводов;			
	- волноводы с волнами типа T;			
	- затухание волн в волноводах.			
4	Колебательные системы СВЧ.			
	Рассматрвиаемые вопросы:			
	- прямоугольный и круглый резонаторы;			
	- структура силовых линий электромагнитного поля для различных типов колебаний в резонаторах;			
	- добротность объемных резонаторов.			
5	Неоднородные уравнения Максвелла.			
	Рассматрвиаемые вопросы:			
	- элементарные излучатели;			
	- неоднородное уравнение Гельмгольца и его решение в случае возбуждения свободного пространства заданными сторонними источниками;			
	- элементарные электрический и магнитный излучатели: структура поля, диаграммы			
	направленности, сопротивление излучения, коэффициент направленного действия.			
6	Распространение радиоволн			
	Рассматрвиаемые вопросы:			
	- распространение радиоволн в нейтральной атмосфере и в свободном пространстве.			
7	Распространение радиоволн			
	Рассматрвиаемые вопросы:			
	- область пространства, существенная для распространения радиоволн.			

4.2. Занятия семинарского типа.

Практические занятия

№	Тематика практических занятий/краткое содержание		
п/п	тематика практических запитии краткое содержание		
1	Решение задач на излучение ЭМВ		
	Рассматрвиаемые вопросы:		
	- решение задач на излучение ЭМВ элеементарными электрическиими и магнитными диполями.		
2	Определение размеров волноводов и характеристик ЭМП		
	Рассматрвиаемые вопросы:		
	- определение размеров волноводов и характеристик ЭМП в прямоугольном и круглом волноводах.		
3	Энергия манитного поля.		
	Рассматрвиаемые вопросы:		
	- энергия магнитного поля соленоида и тороида;		
	- объемная плотность энергии.		
4	Параметры линий радиосвязи		
	Рассматрвиаемые вопросы:		
	- определение параметров линий радиосвязи в совободном пространстве.		
5	Расчет напряженностии ЭМП		
	Рассматрвиаемые вопросы:		
	- расчет напряженностии ЭМП на радиолиниях, проходящих вблзи поверхности Земли.		

№	Tovorova wastawa sawa sawa sawa sawa sawa sawa		
п/п	Тематика практических занятий/краткое содержание		
6	Антенны		
	Рассматрвиаемые вопросы:		
	- характеристики антенн;		
	- способы создания направленного радиоизлучения.		
7	Антенны		
	Рассматрвиаемые вопросы: - коэффициент отражения радиоволн от поверхности;		
	- распространение радиоволн в случае антенн, приподнятых над землей;		
	- формула Введенского.		
8	Распространение радиоволн в нейтральной атмосфере и в свободном пространств		
	Рассматриваемые вопросы:		
	- особенности распространение радиоволн в нейтральной атмосфере и в свободном пространств		
	Уравнения		
	Максвелла. Решение для распространяющейся электромагнитной волны.		
9	Распространение радиоволн в ионосфере и иных проводящих средах		
	Рассматриваемые вопросы:		
	- решение системы дифференциальных уравнений Максвелла для проводящей среды. Особенности		
10	распространения радиоволн в ионосфере.		
10	Область пространства, существенная для распространении радиоволн		
	Рассматриваемые вопросы:		
	- принципы Гюйгенса-Френеля, позволяющие оценить форму и размеры области пространства,		
	существенной для распространении радиоволн.		
11	Коэффициент отражения радиоволн от земной поверхности. Влияние		
11			
	шероховатости поверхности на отражение радиоволн		
	Рассматриваемые вопросы:		
	- изменчивость коэффициента отражения радиоволн от земной поверхности в зависимости от		
	поляризации падающего радиоизлучения и от угла падения. Влияние шероховатости поверхности на отражение		
	радиоволн -		
	критерий Релея.		
	L.L L		

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы	
	Самостоятельное изучение и конспектирование отдельных тем учебной	
	литературы, связынных с разделами дисциплины	
2	Работа с лекционным материалом	
3	Подготовка к практическим занятиям	
4	Подготовка к промежуточной аттестации.	
5	Подготовка к текущему контролю.	

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	лектромагнитные поля и волны: учебное пособие	https://e.lanbook.com/book/110413
	/ В. А. Замотринский, Ж. М. Соколова, Е. В.	
	Падусова, Л. И. Шангина. — Москва : ТУСУР,	
	2012. — 188 c. — ISBN 5-86889-318-2.	
2	Фальковский, О. И. Техническая электродинамика	https://e.lanbook.com/book/210371
	: учебник / О. И. Фальковский. — 2-е изд., стер. —	
	Санкт-Петербург : Лань, 2022. — 432 с. — ISBN	
	978-5-8114-0980-8.	
3	Фальковский, О. И. Техническая электродинамика	https://e.lanbook.com/book/210371
	: учебник / О. И. Фальковский. — 2-е изд., стер. —	
	Санкт-Петербург : Лань, 2022. — 432 с. — ISBN	
	978-5-8114-0980-8.	
4	Милютин, Е. Р. Основы технической	https://e.lanbook.com/book/230411
	электродинамики / Е. Р. Милютин. — 3-е изд.,	
	стер. — Санкт-Петербург : Лань, 2022. — 184 с. —	
	ISBN 978-5-507-44519-6.	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Информационный портал Научная электронная библиотека eLIBRARY.RU (www.elibrary.ru);

Единая коллекция цифровых образовательных ресурсов (http://window, edu.ru);

Научно-техническая библиотека РУТ (МИИТ) (http/library.miit.ru);

Поисковые системы «Яндекс» для доступа к тематическим информационным ресурсам;

Электронно-библиотечная система издательства «Лань» – http://e.lanbook.com/;

Электронно-библиотечная система ibooks.ru – http://ibooks.ru/;

Электронно-библиотечная система «УМЦ» — http://www.umczdt.ru/;

Электронно-библиотечная система «Intermedia» – http://www.intermediapublishing.ru/;

Электронно-библиотечная система «BOOK.ru» – http://www.book.ru/;

Электронно-библиотечная система «ZNANIUM.COM» – http://www.znanium.com/

- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).
 - 1. Microsoft Internet Explorer (или другой браузер);
 - 2. Операционная система Microsoft Windows;
 - 3. Microsoft Office.
- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Для проведения аудиторных занятий и самостоятельной работы требуется:

- 1. Рабочее место преподавателя с персональным компьютером, подключённым к сети INTERNET.
- 2. Специализированная лекционная аудитория с мультимедиа аппаратурой и интерактивной доской.
- 3. Компьютерный класс. Рабочие места студентов в компьютерном классе, подключённые к сети INTERNET
- 4. Для проведения практических занятий: компьютерный класс; компьютеры с минимальными требованиями.

Технические требования к оборудованию для осуществления учебного процесса с использованием дистанционных образовательных технологий:

колонки, наушники или встроенный динамик (для участия в аудиоконференции);

микрофон или гарнитура (для участия в аудиоконференции);

веб-камеры (для участия в видеоконференции);

для ведущего: компьютер с процессором Intel Core 2 Duo от 2 ГГц (или аналог) и выше, от 2 Гб свободной оперативной памяти.

9. Форма промежуточной аттестации:

Экзамен в 4 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, к.н. кафедры «Системы управления транспортной инфраструктурой»

Е.В. Гусарова

Согласовано:

Руководитель образовательной

программы А.С. Киселёва

Председатель учебно-методической

д.В. Паринов