МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы специалитета по специальности 08.05.01 Строительство уникальных зданий и сооружений, утвержденной первым проректором РУТ (МИИТ)

Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Речные гидротехнические сооружения

Специальность: 08.05.01 Строительство уникальных зданий и

сооружений

Специализация: Строительство гидротехнических сооружений

повышенной ответственности

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 1054812

Подписал: заведующий кафедрой Сахненко Маргарита

Александровна

Дата: 30.10.2025

1. Общие сведения о дисциплине (модуле).

Целями освоения дисциплины (модуля) является формирование у студентов знаний:

- назначения, состава и принципов компоновки основных сооружений комплексных речных гидроузлов в конкретных природных условиях с учетом пропуска строительных расходов и производства гидротехнических работ;
- устройства подпорных сооружений (плотин) различных типов из различных материалов, а также назначения и устройства различных элементов их конструкций;
 - устройства водопроводящих сооружений и их затворов;
- устройства и принципов действия судопропускных сооружений (шлюзов и судоподъемников);
- основ гидравлических, фильтрационных, статических расчетов подпорных, водопроводящих и судопропускных гидротехнических сооружений.

2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-10** Способен осуществлять и организовывать техническую эксплуатацию, техническое обслуживание и ремонт зданий и сооружений, осуществлять мониторинг, контроль и надзор в сфере безопасности зданий и сооружений;
- **ПК-1** Обладать знанием нормативной базы в области организационноправовых основ управленческой и предпринимательской деятельности, инженерных изысканий, принципов проектирования зданий, сооружений, инженерных систем и оборудования, планировки и застройки населенных мест;
- **ПК-3** способен осуществлять организацию. руководство и выполнять проектирование гидротехнических сооружений и сооружений береговой инфраструктуры водного транспорта;
- **ПК-6** способен проводить предварительное технико-экономическое обоснование проектных решений, разрабатывать проектную и рабочую техническую документацию, оформлять законченные проектно-конструкторские работы, контролировать соответствие разрабатываемых проектов техническому заданию с использованием средств автоматизированного проектирования;
 - ПК-7 Способен проводить анализ объекта градостроительной

деятельности с прогнозированием природно-техногенной опасности, внешних воздействий для оценки и управления рисками применительно к исследуемому объекту градостроительной деятельности;

- **ПК-10** Способен планировать, организовать и проводить инженерные мероприятия по обеспечению условий безопасного судоходства;
- **УК-6** Способен определять и реализовывать приоритеты собственной деятельности и способы ее совершенствования на основе самооценки и образования в течение всей жизни.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- различные типов водоподпорных, водопроводящих, судопропускных сооружений, судоходных каналов, элементов их конструкций;
- природу нагрузок и воздействий на подпорные гидротехнические сооружения и методов их определения.

Уметь:

- конструировать, производить статические, гидравлические и фильтрационные расчеты основных типов водоподпорных, водопроводящих и судопропускных сооружений;
- пользоваться основной технической литературой и нормативными документами по гидротехническим сооружениям.

Владеть:

- методами конструирования и расчетов различных гидротехнических сооружений.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 17 з.е. (612 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов		
тип учеоных занятии	Всего	Семестр	

		№8	№9	№ 10	№ 11
Контактная работа при проведении учебных занятий (всего):	296	64	68	82	82
В том числе:					
Занятия лекционного типа	114	16	34	32	32
Занятия семинарского типа	182	48	34	50	50

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 316 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

№	Тематика лекционных занятий / краткое содержание				
п/п	тематика лекционных запитии / краткое содержание				
1	Подпорные речные гидроузлы.				
	Рассматриваемые вопросы:				
	Водное хозяйство и речные гидротехнические сооружения: водное хозяйство и его отрасли;				
	классификации гидротехнических сооружений; гидроузлы и гидросистемы.				
	Принципы комплексной реконструкции рек: шлюзование рек; межбассейновые соединения; плотины				
	и водохранилища в мире и в РФ; зонирование водохранилища; принцип непрерывности каскада при				
	реконструкции реки.				
	Комплексные гидроузлы: гидроузлы низкого, среднего и высокого напора (сопоставление); состав				
	сооружений, принципы компоновки в зависимости от пропуска строительных расходов; размещение				
	водосбросных сооружений, расчетные и поверочные расходы воды; габариты основных сооружений				
	(судоходный шлюз, его подходные каналы, водосбросная плотина, устройства нижнего бьефа,				
	рыбопропускные сооружения, грунтовая плотина и др.).				
	Воздействия на гидротехнические сооружения: общая характеристика воздействий (механических,				
	физических, химических, биологических); воздействия поверхностных потоков; силы				
	гидростатического и гидродинамического давления; воздействия фильтрационного потока;				
	воздействия льда, волн, наносов, судов и др.; другие воздействия (температурные, сейсмические и				
	др.).				
	Основные нагрузки на подпорные ГТС и их определение: принципы расчета прочности и				
	устойчивости по предельным состояниям; нагрузки и их сочетания; анализ профиля гравитационной				
	бетонной плотины; статический расчет плотины на скальном основании с верховой бетонной стенкой				
	и низовой грунтовой упорной призмой.				

№	T. ~ /
Π/Π	Тематика лекционных занятий / краткое содержание
	Затворы гидротехнических сооружений (поверхностные затворы): классификация; затворы плоские,
	сегментные, ва¬ль¬цовые, секторные, клапанные, «дахвер» и др.; определение гидростатической
	нагрузки; размещение ригелей плоского затвора и двустворчатых ворот шлюза по условию
	равнозагруженности.
	Затворы гидротехнических сооружений (затворы глубинных отверстий): классификация; затворы
	плоские, сегментные, дисковые, шаровые, игольчатые, конусные и др.; высоконапорные затворы.
2	Плотины.
	Рассматриваемые вопросы:
	Общие принципы проектирования и строительства грунтовых плотин: классификации грунтовых
	плотин (по материалам, кон¬струкции, спо¬собу возведения и др.); проектные физико-ме¬ханически
	характеристики грунтов плотин; конструирование профиля грунтовых плотин: гребень, откосы и их
	крепления; противофильтрационные устройства; дренажи; переходные зоны; особенности намывных
	плотин и плотин из крупнообломочных материалов («каменно-на¬б¬рос¬ных», «каменно-земляных»
	Расчеты грунтовых плотин: фильтрационные расчеты; расчеты устойчивости.
	Бетонные гравитационные плотины (общие сведения): требования к бетону плотин; анализ профиля
	гравитационной плотины; влияние оснований на форму профиля; профили глухих и водосливных
	плотин; швы плотин; разрезка на блоки бетонирования; пути улучшения и удешевления
	гравитационных плотин.
	Водосбросные плотины на нескальных основаниях: типы порога плотин, пропускная способность
	(открытого отверстия и при истечении из-под затвора); сопряжение бьефов при маневрировании
	затворами; водобой и рисберма водосливной плотины (конструкции, расчеты); гасители (ти¬пы,
	принципы расчета); сбой ные течения в НБ и борьба с ними; подземный контур плотины: основные схемы, постро ение эпюры фильтрационного противодавления методом «удлиненной контурной
	линии»; понуры плотин; быки водосливной плотины; разрезка плотины швами, их уплотнения;
	основы статических расчетов; сопрягающие сооружения водосливных плотин: типы устоев, обходная
	фильтрация и конструктивные мероприятия по борьбе с ней.
	Контрфорсные плотины: гравитационная плотина с «рас¬ши¬ренными швами»; массивно-
	контрфорсные плотины; пло¬тины с плоскими перекрытиями; многоарочные плотины; основы
	статических расчетов контрфорсных плотин.
	Арочные плотины: условия применения; типы; береговые примыкания; конструктивные элементы;
	водосбросы арочных плотин.
3	Судопропускные сооружения.
	Рассматриваемые вопросы:
	Судоходные шлюзы (типология): типы, основные конструктивные элементы судоходных шлюзов и и
	оборудования.
	Системы питания судоходных шлюзов и их гидравлические расчеты.
	Головы и камеры шлюзов и их расчеты: конструкции голов и камер шлюзов; статические расчеты
	строительных конструкций шлюзов.
	Транспортные судоподъемники: основные типы судоподъемников (с примерами осуществленных);
	проблемы проектирования и их решения.
4	Особые типы подпорных и водопропускных ГТС.
	Рассматриваемые вопросы:
	Редкие типы плотин: плотины деревянные, тканевые и др.
	Каналы как водопроводящие сооружения: типы каналов, формы и размеры сечений; потери воды из
	каналов и борьба с ними; сооружения на каналах (лотки, акведуки, дюкеры, трубы, перепады,
	быстротоки, шлюзы-регуляторы, вододелители и др.).
	Гидротехнические туннели: напорные и безнапорные туннели; формы сечения; обделки; принципы
	статических расчетов; основы проходки туннелей.
	Особые типы водосбросов: трубчатые водосбросы в грунтовых плотинах; боковые, туннельные,
	шахтные, вихревые, сифонные водосбросы.
	Рыбопропускные сооружения: назначение, принципы действия, основные типы, компоновка в

№ π/π	Тематика лекционных занятий / краткое содержание	
	гидроузлах.	

4.2. Занятия семинарского типа.

Лабораторные работы

No					
п/п	Наименование лабораторных работ / краткое содержание				
1	Физическое моделирование безнапорной фильтрации: фильтрация в однородной				
	земляной плотине.				
	Работа выполняется на фильтрационном лотке (устанавливается горизонтально), на прозрачную (из				
	оргстекла) стенку которого нанесена масштабная сетка. Из песка формируется модель плотины с				
	откосами 1:21:2,5. Верхний бьеф заполняется водой (желательно, подкрашенной). Дожидаются,				
	когда фильтрационный поток установится. По координатной сетке измеряют положение поверхно депрессии. Профиль модели вычерчивают в масштабе на миллиметровке, наносят кривую депрес				
	Полученный результат сравнивают с одним из аналитических решений. Возможно выполнение данной				
	работы с применением метода ЭГДА.				
2	Устойчивость откосов грунтовой плотины.				
	Работа выполняется на фильтрационном лотке (см. лаб. раб. № 1), он имеет возможность изменения				
	наклона. В начале опыта лоток установлен горизонтально. Из песка формируется модель плотины с				
	откосами 1:21:2,5. Верхний бьеф заполняется водой (желательно, подкрашенной). Дожидаются,				
	когда фильтрационный поток установится. Лоток наклоняют в сторону НБ поэтапно, на 13?, дожидаясь каждый раз установления фильтрационного потока. Фиксируют каждый раз, каким стал				
	фактический уклон низового откоса. Когда низовой откос начнет разрушаться, фиксируют положение				
	и форму поверхности обрушение. Целесообразно лабораторные работы №№ 1 и 2 выполнять				
	последовательно, на одной и той же модели.				
3	Физическое моделирование напорной фильтрации: фильтрация в нескальном				
	основании бетонной плотины.				
	В фильтрационном лотке моделируется двухшпунтовый подземный контур с зубьями. На рисунке				
	подземный контур изображен трехшпунтовым, но отсутствие того или шпунтового ряда задается				
	нулевым значением глубины его погружения. Фильтрующее основание моделируется из песка.				
	Верхний бьеф заполняется водой. Дожидаются установления фильтрационного потока. Параметры фильтрационного потока фиксируются пьезометрическими трубками. По результатам измерений				
	строят эквипотенциали фильтрационного потока. Физическое моделирование по возможности может				
	быть заменено моделированием по методу ЭГДА.				
4	Маневрирование затворами водосливной плотины и режимы сопряжения бьефов.				
	Работа выполняется на гидравлическом лотке, на модели трехпролетной водосливной плотины с				
	плоскими затворами. В процессе выполнения работы режим потока должен быть установивнимся,				
	уровень ВБ поддерживается постоянным, протекающий по модели расход воды измеряется				
	треугольным водосливом в конце лотка.				
5	Гашение энергии потока в нижнем бьефе водосливной плотины.				
	Задача работы — пронаблюдать форму сопряжения бьефов (отогнанный или затопленный прыжок)				
	при разных глубинах НБ. Расход пропускается через все 3 полностью открытые отверстия модели лаб. раб. № 4. Он измеряется треугольным водосливом в конце лотка. Варьируется глубина потока в НБ,				
	сначала прыжок должен быть отогнанным, повышением уровня воды НБ добиваются, чтобы он стал				
	затопленным. Фиксируют (измеряют) отметки воды и глубины в НБ модели. Измеренные величины				
	сравнивают с расчетными.				
6	Гидравлика лестничного рыбохода.				
	Работа выполняется на гидравлическом лотке, на модели трехбассейнового лестничного рыбохода.				
	Измеряется расход воды треугольным водосливом в конце лотка. Измеряются уровни воды в				

№ п/п	Наименование лабораторных работ / краткое содержание		
	бассейнах. Поскольку задача проектирования лестничного рыбохода состоит в том, чтобы скорость		
	потока соответствовала породе проускаемых рыб, определяют скорости в вплывных отверстиях.		
	Используют для этого трубки Пито.		

Практические занятия

	Практические занятия
№ п/п	Тематика практических занятий/краткое содержание
1	Нагрузки на подпорное гидротехническое сооружение.
	Прорабатывается материал, излагаемый в лекциях, соответствующих разделах учебника,
	справочников и т.п. Преподаватель задает на доске профиль плотины (обычно — гравитационной
	бетонной), студентам предлагается вычислить:
	- собственный вес сооружения, разбивая его профиль на простые геометрические фигуры,
	- для разных уровней бьефов — нагрузки от гидростатического давления,
	- для разных уровней бьефов — нагрузки от фильтрационного противодавления (преподаватель
	предлагает разные варианты расположения дренажа под подошвой плотины).
2	Расчеты пропускной способности водослива без затворов.
3	Гидравлические расчеты многопролетной водосливной плотины при маневрировании
	затворами.
4	Расчеты сопряжения бьефов.
	За водосбросной плотиной на нескальном основании должен быть донный режим сопряжения бьефов
	с затопленным прыжком, отогнанный прыжок не допускается. Расчеты выполняются по условиям занятия № 3 при маневрировании затворами.
5	Фильтрационные расчеты водосливной бетонной плотины на нескальном основании
3	
	методом удлиненной контурной линии.
	Предполагается выполнение самостоятельно расчета двухшпунтового подземного контур с зубьями по
6	индивидуальному заданию.
0	Нагрузки на гравитационную бетонную плотину на скальном основании. Студент получает индивидуальный вариант задания, вычерчивает в масштабе с нанесением размеров
	и с пояснением обозначений профиль плотины, соответствующий его варианту и выполняет расчеты,
	сводя их в таблицу установленной формы.
7	Напряженное состояние гравитационной бетонной плотины на скальном основании.
,	По вычисленным на занятии № 6 (по индивидуальным заданиям) нагрузкам студент методом
	сопромата (по формулам внецентренного сжатия) вычисляет нормальные напряжения на подошве
	сооружения при наличии и отсутствии воды в ВБ.
8	Анализ профиля гравитационной бетонной плотины.
	Профиль плотины приводится к треугольному. Аналитически находят профиль, характеризующийся
	минимальной шириной понизу, причем в нем не должно быть растягивающих напряжений и должна
	быть обеспечена устойчивость на сдвиг. При этом, принимая различные значения коэффициента
	трения плотины по основанию, должны быть получены типичные профили.
9	Фильтрационные расчеты однородной грунтовой плотины.
	Выполняется расчет однородной грунтовой плотины на непроницаемом основании с внутренним
	дренажом при отсутствии воды в нижнем бьефе (аналитическое решение С.Н. Нумерова), а также
	однородной плотины на непроницаемом основании и с дренажным банкетом при наличии воды в
10	нижнем бьефе (решение А.А. Угинчуса).
10	Расчеты устойчивости грунтовой плотины
	Выполняется расчет устойчивости низового откоса по круглоцилиндрической поверхности
	скольжения. Индивидуализация достигается заданием различной высоты плотины и заложений
11	откосов. Расчет выполняется вручную, для одной поверхности, сводится в таблицу обычного типа.
11	Компоновка ригелей плоского затвора по условию их равнозагруженности.

$N_{\underline{0}}$	Томотунка проктунноским роматий/кратусов во поручения	
п/п	Тематика практических занятий/краткое содержание	
	Принимается наиболее общий случай — при наличии воды в НБ. Это соответствует плоскому затвору затопленного водослива, или же створке двустворчатых ворот судоходного шлюза. Число ригелей и их расположение определяются из условий равнонагруженности ригелей — чтобы они были однотипными, а их прогибы — одинаковыми. Это делают с помощью интегральной кривой давления воды.	
12	Гидравлические расчеты водопроводных каналов.	
	Выполняются расчеты каналов прямоугольного и трапецоидального профиля. Индивидуально задаются откосы и ширина канала, характер дна и бортов (по нему определяется коэффициент	
	шероховатости). При заданном уклоне рекомендуется определить пропускаемый каналом расход, или наоборот, по расходу определить требуемый уклон. Предлагается использовать формулу Шези,	
	определяя коэффициент Шези по формуле Маннинга. Расчет производить методом последовательных	
	приближений, принимая в первом приближении глубину в канале 1 м.	
13	Плановое расположение полузапруд на криволинейном участке реки.	
	Студент получает план участка реки, его задача — разместить у вогнутого (размываемого) берега	
	полузапруды (шпоры). Угол растекания потока рекомендуется 78?.	
14	Гидравлика лестничного рыбохода	
	Задается лестничный рыбоход. Индивидуально задается его ширина и число ступеней, а также	
	расположение и размеры рыбоходных отверстий. Уровни бьефов принимаются каждым студентом по	
	заданию курсового проекта. Задача гидравлического расчета — при принятых числе ступеней и габаритах лот¬ка обосновать размеры рыбоходных отверстий: вычислив скорость потока в них,	
	определить, пригодна ли она для заданной ему породы рыб.	
15	Обработка показаний пьезометров на низовом откосе грунтовой плотины.	
	Студент получает результаты одновременных измерений по пьезометрам, расположенным в одном	
	створе грунтовой плотины и строит по ним кривую депрессии.	

4.3. Самостоятельная работа обучающихся.

№	Вид самостоятельной работы	
п/п		
1	Работа с конспектом лекций, изучение литературы.	
2	Подготовка к практическим и лабораторным занятиям.	
3	Подготовка к лабораторным работам.	
4	Выполнение курсового проекта.	
5	Выполнение курсовой работы.	
6	Подготовка к промежуточной аттестации.	
7	Подготовка к текущему контролю.	

4.4. Примерный перечень тем видов работ

1. Примерный перечень тем курсовых проектов

Судоходный шлюз в составе речного гилроузла на нескальном основании

2. Примерный перечень тем курсовых работ

Водосливная бетонная плотина в составе речного гилроузла на нескальном основании

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Михайлов А.В. Внутренние водные	Библиотека АВТ
	пути. М.: АСВ, 2004.	
2	Гидротехнические сооружения / Под	Библиотека АВТ
	ред. Л.Н. Рассказова. Ч. 1, 2. М.:	
	Стройиздат, 1996	
3	Нестеров, М. В. Гидротехнические	https://znanium.com/catalog/document?id=63566
	сооружения: Учебник / Нестеров М.В., -	
	2-е изд., испр. и доп Москва :НИЦ	
	ИНФРА-М, Нов. знание, 2015 601 с.	
	(Высшее образование:	
	Бакалавриат)ISBN 978-5-16-010306-8	
	Текст : электронный.	
4	Беляков, А. А. Судоходный шлюз на	https://znanium.com/catalog/document?id=11367
	нескальном основании: учебное	
	пособие к выполнению курсового	
	проекта / А. А. Беляков, Ю. С. Шматова.	
	- Москва : МГАВТ, 2004 76 с Текст :	
	электронный.	
5	Справочник по гидравлическим	Библиотека АВТ
	расчетам / Под ред. П.Г. Киселева. Изд.	
	5-е. М.: Энергия, 1974 (или любое	
	другое издание этого справочника).	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (https://www.miit.ru/).

Научно-техническая библиотека РУТ (МИИТ) (http:/library.miit.ru).

Образовательная платформа «Юрайт» (https://urait.ru/).

Общие информационные, справочные и поисковые системы «Консультант Плюс», «Гарант».

Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/).

Электронно-библиотечная система ibooks.ru (http://ibooks.ru/).

- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).
 - 1. Операционная система Microsoft Windows
 - 2. Офисный пакет приложений MS Office (Word, Excel, PowerPoint)
 - 3. Система автоматизированного проектирования Autocad
- 4. При проведении занятий с применением электронного обучения и дистанционных образовательных технологий, могут применяться следующие средства коммуникаций: ЭИОС РУТ(МИИТ), Microsoft Teams, электронная почта, скайп, WhatsApp и т.п.
- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебные аудитории для проведения учебных занятий, оснащенные компьютерной техникой и наборами демонстрационного оборудования.

Лабораторные работы проводятся на тренажерах:

- «Лабораторный комплекс исследования динамики донных отложений и наносов (Лабораторная установка по изучению механики жидкости)»;
 - «Гидравлический лоток-гидравлика сооружений и волновых явлений»;
- Типовой комплект учебного оборудования «Истечение жидкости из отверстий и насадков».
 - 9. Форма промежуточной аттестации:

Курсовая работа в 8 семестре.

Зачет в 8, 9 семестрах.

Курсовой проект в 10, 11 семестрах.

Экзамен в 10, 11 семестрах.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

профессор, д.н. кафедры «Водные пути, порты и портовое оборудование» Академии водного транспорта

А.А. Беляков

Согласовано:

Заведующий кафедрой ВППиПО

М.А. Сахненко

Председатель учебно-методической

комиссии А.Б. Володин