МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 26.03.03 Водные пути, порты и гидротехнические сооружения,

утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

САПР и пространственное моделирование

Направление подготовки: 26.03.03 Водные пути, порты и

гидротехнические сооружения

Направленность (профиль): Проектирование портов и терминалов

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 1054812

Подписал: И.о. заведующего кафедрой Сахненко Маргарита

Александровна

Дата: 05.06.2023

1. Общие сведения о дисциплине (модуле).

Цель учебной дисциплины формирование компетенции в области трехмерного пространственного проектирования на базе современного программного обеспечения, широко используемого на предприятиях отрасли. Задачи изучение, обучение навыкам владения средствами пространственногопроектирования на базе современных программных комплексов.

2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-1** Способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности;
- **ПК-6** Способен к анализу и разработке проектной и эксплуатационной нормативно-технической документации портов;
- **ПК-7** Способен ставить и решать инженерные задачи на всех этапах жизненного цикла (проектировании, вводе в эксплуатацию, эксплуатации, реконструкции, капитальном ремонте, техническом перевооружении, консервации и ликвидации) терминалов и перегрузочных комплексов портов.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

средства и методы компьютерного моделирования с использованием современных систем проектирования и моделирования

Уметь:

формировать компьютерную программно- расчетную модель и выполнять расчеты этой модели узла, агрегата или конструкции транспортных и транспортно-технологических машин и оборудования

Владеть:

способами компьютерного программного моделирования и расчета, обработки и анализа результатов математических и экспериментальных данных, навыками работы с современным расчетно- графическим и текстовым программным обеспечением

3. Объем дисциплины (модуля).

3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 13 з.е. (468 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

		Количество часов			
Тип учебных занятий	Всего	Семестр			
		№3	№4	№5	
Контактная работа при проведении учебных занятий (всего):	208	48	112	48	
В том числе:					
Занятия лекционного типа		16	32	16	
Занятия семинарского типа	144	32	80	32	

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 260 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

№ п/п	Тематика лекционных занятий / краткое содержание	
1	работы с пользовательским интерфейсом программы Autodesk Inventor	
	Рассматриваемые вопросы:	
	Раздел 1 Основы работы с пользовательским интерфейсом программы Autodesk Inventor	

№	Томотика покумочну у запатий / краткое со поругание			
п/п	Тематика лекционных занятий / краткое содержание			
	Раздел 2 Работа с двумерными эскизами в программе Autodesk Inventor			
2	Работа с деталями в программе Autodesk Inventor			
	Рассматриваемые вопросы:			
	Раздел 3 Работа с деталями в программе Autodesk Inventor			
	Раздел 4 Работа со сборочными единицами в программе Autodesk Inventor			
3	Прочностные расчёты			
	Рассматриваемые вопросы:			
	Раздел 5 Работа со сборочными единицами в программе Autodesk Inventor			
	Раздел 6 Прочностные расчёты в программе Autodesk Inventor			
4	Метод конечных элементов			
	Рассматриваемые вопросы:			
	Раздел 7 Метод конечных элементов. Расчёт ферм методом конечных элементов в модуле АРМ			
	Structure 3D.			
5	Работа с пользовательским интерфейсом программы APM Structure3D			
	Рассматриваемые вопросы:			
	Раздел 8 Основы работы с пользовательским интерфейсом программы APM Structure3D			
6	Создание конструкций в APM Structure3D			
	Рассматриваемые вопросы:			
	Раздел 9 Типы конечных элементов, используемых в программе APM Structure3D			
	Раздел 10 Создание конструкции и расчётных схем в АРМ			
	Structure3D			
7	Расчеты в APM Structure3D			
	Рассматриваемые вопросы:			
	Виды расчетов в системе APM Structure3D			

4.2. Занятия семинарского типа.

Лабораторные работы

No॒	Наименование лабораторных работ / краткое содержание			
Π/Π	тинженовиние лисоориторных рисот / криткое содержиние			
1	Основы работы с ползовательским интерфейсом программы Autodesk Inventor.			
	В результате выполнения лабораторной работы студент получает умение и навык:Настройки			
	интерфейса Autodesk Inventor Настройки интерфейса Autodesk Inventor Адаптация внешнего вида и			
	панелей инструментов программы Autodesk Inventor			
2	Работа с двумерными эскизами в программе Autodesk Inventor.			
	В результате выполнения лабораторной работы студент получает умение и навык:Двумерного			
	моделирования. Двумерное моделирование Построение двумерных эскизов по индивидуальным			
	заданиям			
3	Работа с деталями в программе Autodesk Inventor.			
	В результате выполнения лабораторной работы студент получает умение и навык: Моделирования тел			
	и поверхностей Моделирование тел и поверхностей. Разработка деталей по индивидуальным заданиям			
4	Работа со сборочными единицами в программе Autodesk Inventor.			
	В результате выполнения лабораторной работы студент получает умение и навык: Работы со			
	Сборочными единицами. Сборочные единицы. Разработка сборочных единиц, включающих ранее			
	созданные детали.			
5	Работа со сборочными единицами в программе Autodesk Inventor.			
	В результате выполнения лабораторной работы студент получает умение и навык: Параметризация в			
	Autodesk Inventor Параметризация в Autodesk Inventor. Разработка параметрически связанных деталей			

№ п/п	Наименование лабораторных работ / краткое содержание		
	и сборочных единиц по индивидуальным заданиям		
6	Прочностные расчёты в программе Autodesk Inventor. В результате выполнения лабораторной работы студент получает умение и навык: Расчётов методом конечных элементов Расчёты методом конечных элементов. Проверочные расчёты разработанных сборочных единиц и деталей методом конечных элементов. Анализ результатов расчёта.		
7	Расчёт ферм методом конечных элементов в модуле APM Structure 3D. В результате выполнения лабораторной работы студент получает умение и навык: Моделирование ферм Моделирование ферм Разработка расчётной схемы двумерной фермы по индивидуальным заданиям, её расчёт и анализ результатов		
8	Основы работы с пользовательским интерфейсом программы APM Structure3D. В результате выполнения лабораторной работы студент получает умение и навык:Настройки интерфейса APM Structure3D Настройка интерфейса APM Structure3D Адаптация внешнего вида и панелей инструментов программы APM Structure3D		
9	Создание конструкции и расчётных схем в APM Structure3D. В результате выполнения лабораторной работы студент получает умение и навык:Моделирования конструкций Разработка расчётной схемы конструкции по индивидуальным заданиям. Статический расчёт и анализ результатов		
10	Типы конечных элементов, используемых в программе APM Structure3D. В результате выполнения лабораторной работы студент получает умение и навык: Построения смешанных моделей Построение смешанных моделей. Изучение особенностей конечных элементов типов "rod", "slab", "solid". Изучение способов соединения конечных элементов различных типов		
11	Виды расчетов в системе APM Structure3D. В результате работы на лаболраторной работе студент получает навык:Статических расчётов с учётом нелинейности Статические расчёты с учётом нелинейности Расчёт построенной ранее схемы с учётом геометрической и физической нелинейности, определение резонансной частоты, оптимизация конструкции		

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Изучение литературы, лекционного материала
2	Подготовка к текущему контролю
3	Выполнение курсовой работы
4	Подготовка к промежуточной аттестации
5	Выполнение курсовой работы.
6	Подготовка к промежуточной аттестации.
7	Подготовка к текущему контролю.

- 4.4. Примерный перечень тем курсовых работ
- 1. Проектирование и изготовление в 3D модели ВДГ.
- 2. Проектирование и изготовление в 3D модели ГРЩ.
- 3. Проектирование и изготовление в 3D модели валопровода.

- 4. Проектирование и изготовление в 3D модели трапа MO.
- 5. Проектирование и изготовление в 3D модели вспомогательного котла.
- 6. Проектирование и изготовление в 3D модели станции очистки нефтесодержащих вод.
 - 7. Проектирование и изготовление в 3D модели вентилятора MO.
- 8. Проектирование и изготовление в 3D модели воздушного компрессора и воздушных баллонов.
- 9. Проектирование и изготовление в 3D модели типового центробежного насоса.
 - 10. Проектирование и изготовление в 3D модели ручного насоса.
 - 11. Проектирование и изготовление в 3D модели гидрофора.
 - 12. Проектирование и изготовление в 3D модели сепаратора.
- 13. Проектирование и изготовление в 3D модели трубопроводов газовыпуска с глушителем.
 - 14. Проектирование и изготовление в 3D модели ВДГ.
 - 15. Проектирование и изготовление в 3D модели ГРЩ.
 - 16. Проектирование и изготовление в 3D модели валопровода.
 - 17. Проектирование и изготовление в 3D модели трапа MO.
- 18. Проектирование и изготовление в 3D модели вспомогательного котла.
- 19. Проектирование и изготовление в 3D модели станции очистки нефтесодержащих вод.
 - 20. Проектирование и изготовление в 3D модели вентилятора МО.
- 21. Проектирование и изготовление в 3D модели воздушного компрессора и воздушных баллонов.
- 22. Проектирование и изготовление в 3D модели типового центробежного насоса.
 - 23. Проектирование и изготовление в 3D модели ручного насоса.
 - 24. Проектирование и изготовление в 3D модели гидрофора.
 - 25. Проектирование и изготовление в 3D модели сепаратора.
 - 26. Проектирование и изготовление в 3D модели ВДГ.
 - 27. Проектирование и изготовление в 3D модели ГРЩ.
 - 28. Проектирование и изготовление в 3D модели валопровода.
 - 29. Проектирование и изготовление в 3D модели трапа МО.

- 30. Проектирование и изготовление в 3D модели вспомогательного котла.
- 31. Проектирование и изготовление в 3D модели станции очистки нефтесодержащих вод.
 - 32. Проектирование и изготовление в 3D модели вентилятора MO.
- 33. Проектирование и изготовление в 3D модели воздушного компрессора и воздушных баллонов.
- 34. Проектирование и изготовление в 3D модели типового центробежного насоса.
 - 35. Проектирование и изготовление в 3D модели ручного насоса.
 - 36. Проектирование и изготовление в 3D модели гидрофора.
 - 37. Проектирование и изготовление в 3D модели сепаратора.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Твердотельное моделирование машиностроительных изделий в Autodesk	Текст: электронный URL: https://znanium.com/catalog/product/407046
	Invento В. Г. Концевич. Учебное пособие	
	Киев, Москва : ДиаСофтЮП, ДМК Пресс,	
	2009	
2	Проектирование и расчет методом конечных элементов трехмерных конструкций в среде	библиотека РУТ
	APM Structure3D Учебное пособие	
3	САПР конструктора машиностроителя	Текст : электронный URL:
	Берлинер, Э. М., О.В. Таратынов. Учебник	https://znanium.com/catalog/product/988233
	М.: ФОРУМ: ИНФРА-М,, 2019	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Сайт крупнейшей системы САПР www.solidworks.ru

Научно-технический центр «АПМ» – https://apm.ru/apm-winmachine

НПП «Подъемтранссервис» http://www.npp-pts.ru/products/212/

Техника для портов и терминалов https://severmek.ru/product-category/technica-dlya-portov-i-terminalov/

Производственное объединение «TEXHOPOC» https://tehnoros-sklad.ru/

Группа компаний Konecranes https://www.konecranes.com/ru-ru/oborudovanie/portovoe-oborudovanie

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Autodesk Inventor Система автоматизированного проектирования (CAD) APM Winmachine Специализированная САПР

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебные аудитории для проведения учебных занятий, оснащенные компьютерной техникой и наборами демонстрационного и рабочего оборудования.

9. Форма промежуточной аттестации:

Зачет в 3, 4 семестрах.

Курсовая работа в 4 семестре.

Экзамен в 5 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, к.н. кафедры «Водные пути, порты и портовое оборудование» Академии водного транспорта

А.Ю. Ганшкевич

Согласовано:

и.о. заведующего кафедрой ВППиПО

М.А. Сахненко

Председатель учебно-методической

комиссии А.А. Гузенко