МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы специалитета по специальности 23.05.05 Системы обеспечения движения поездов, утвержденной первым проректором РУТ (МИИТ)

Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Системы автоматизированного проектирования электроснабжения

Специальность: 23.05.05 Системы обеспечения движения

поездов

Специализация: Электроснабжение железных дорог

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 3221

Подписал: заведующий кафедрой Шевлюгин Максим

Валерьевич

Дата: 02.09.2025

1. Общие сведения о дисциплине (модуле).

Целью освоения дисциплины является формирование у студентов необходимых знаний и умений для определения мест расположения тяговых подстанций, мощностей силового оборудования и сечения контактной подвески на электрифицируемых участках постоянного или переменного тока на основе компьютерного моделирования. А также для моделирования с целью исследования различных переходных и аварийных режимов работы устройств электроснабжения.

Задачами дисциплины является освоение проектирования:

- систем тягового электроснабжения постоянного тока 3,3кВ;
- систем тягового электроснабжения переменного тока 25кB и 2x25кB.
- систем усиления тягового электроснабжения при росте грузопотока, при организации движения тяжеловесных поездов;, а также при повышении скоростей движения поездов.

2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-2** Способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности;
- **ОПК-4** Способен выполнять проектирование и расчет транспортных объектов в соответствии с требованиями нормативных документов;
- **ОПК-10** Способен формулировать и решать научно-технические задачи в области своей профессиональной деятельности;
- **ПК-3** Способен проводить разработку и экспертизу проектов систем электроснабжения железных дорог и метрополитенов, их отдельных элементов и технологических процессов, в том числе, с использованием систем автоматизированного проектирования?.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- основные способы анализа исследовательских задач;
- принципы и основные этапы компьютерного проектирования систем электроснабжения;

- компьютерные программы для имитации элементов системы электроснабжения;
- методы и средства построения двух- и трехмерных моделей устройств электроснабжения

Уметь:

- формировать информационную базу для проектирования;
- применять теоретические знания к расчету, анализу и моделированию устройств электроснабжения;
 - выбирать методы и средства для решения поставленных задач;
- применять методы математического и компьютерного моделирования для исследования систем и устройств электроснабжения

Владеть:

- приёмами программирования алгоритмов решения уравнения движения

поезда с использованием универсальных средств разработки приложений и профессиональных систем компьютерной математики;

- навыками работы в системах автоматизированного проектирования;
- навыками проведения конечно-элементных расчетов устройств электроснабжения;
 - навыками компьютерного оформления технической документации
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 3 з.е. (108 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип үчебных занятий	Количество часов	
тип учесных занятии		Семестр №9
Контактная работа при проведении учебных занятий (всего):	64	64
В том числе:		
Занятия лекционного типа	32	32
Занятия семинарского типа	32	32

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 44 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

No	Тематика лекционных занятий / краткое содержание		
п/п			
1	Основы САПР.		
	Рассматриваемые вопросы:		
	- Интегрированные САПР;		
	- Термины и определения;		
	- Ступени развития САПР;		
	- Достоинства САПР;		
	- Этапы проектирования.		
2	Состав системы автоматизированного проектирования.		
	Рассматриваемые вопросы:		
	- Понятия проектная процедура и проектные операции.		
	- Виды обеспечения систем автоматизированного проектирования.		
	- Описание, анализ и оценка использования САПР в электроэнергетике.		
	- Комплекс средств автоматизированного проектирования.		
3	Программное обеспечение САПР.		
	Рассматриваемые вопросы:		
	- Виды рограммного обеспечение САПР;		
	- Требования, которым должно удовлетворять ПО САПР;		
	- Прикладное ПО;		
	- ПО, созданное пользователем (приложение).		
4	Физическое и математическое моделирование.		
	Рассматриваемые вопросы:		
	- Понятие «математическая модель»;		
	- Математическое и физическое моделирование;		
	- Роль математических и физических моделей в системах автоматизированного проектирования;		
	- Недостатки физического моделирования.		
5	Математические модели в системах автоматизирован □ ного проектирования.		
	Рассматриваемые вопросы:		

No			
п/п	Тематика лекционных занятий / краткое содержание		
	- Методы получения математических моделей электроэнергетических устройств;		
	- Построение ма □ тематических моделей;		
	- Понятие «математическая модель»;		
	- Виды математических моделей: статические и динамические, детерминированные и		
	стохастические, непрерывные и дискретные;		
	- Использование математических моделей при проектировании;		
	- Имитационное моделирование.		
6	Одноэтапные методы.		
	Рассматриваемые вопросы:		
	- Достоинства, недостатки;		
	- Методы перебора (методы упорядоченного перебора и методы случайного перебора);		
	- Одноэтапные методы – градиентные и методы возможных направлений		
7	Многоэтапные методы.		
	Рассматриваемые вопросы:		
	- Рекомендации по применению методов;		
	- Методы покомпонентного улучшения и методы динамического программирования.		
8	Элементы машинной графики		
	Рассматриваемые вопросы:		
	- Элементы машинной графики в автоматизированном конструировании;		
	- Схема процесса конструирования;		
	- Модели графических документов;		
	- Структура чертежно □ графической подсистемы;		
	- Перспективы перехода от двухмерного к трехмерному проектированию;		
	- Преимущества 3D моделирования.		

4.2. Занятия семинарского типа.

Лабораторные работы

№ п/п	Наименование лабораторных работ / краткое содержание		
1	Разработка информационной базы для проектирования СТЭ.		
	В результате выполнения работы у студента формируется навык формирования исходных данных для проектирования СТЭ.		
2	Вероятностное моделирование профиля пути участка по заданной категории		
	сложности.		
	В результате выполнения работы у студента формируется навык формирования профиля пути для		
	проетирования СТЭ		
3	Моделирование движения поезда.		
	В результате выполнения работы у студента формируется навык проведения исследования		
	генераторного тока тяговых двигателей электровоза		
4	Моделирование быстродействующих выключателей тяговых подстанций		
	постоянного тока.		
	В результате выполнения работы у студента формируется навык проведения исследования процесса		
	отключения тока короткого замыкания в тяговой сети		
5	Моделирование разрядных устройств тяговой подстанции постоянного тока.		
	В результате выполнения работы у студента формируется навык проведения исследования влияния УР-2 на процесс отключения тока короткого замыкания в тяговой сети		

№ п/п	Наименование лабораторных работ / краткое содержание	
6	Моделирование сглаживающего устройства тяговой подстанции постоянного тока.	
	В результате выполнения работы у студента формируется навык оценки влияния сглаживающего устройства (СУ) на гармонический состав выпрямленного напряжения тяговой подстанции;	
7	Расчёт удельной средней нагрузки участка, подлежащего электрификации.	
	В результате выполнения работы у студента формируется навык расчета и анализа работы	
	электрифицированной железной дороги в нормальном и аварийном режимах	
8	Определение оптимального среднего расстояния между тяговыми подстанциями по	
	номограммам.	
	В результате выполнения работы у студента формируется навык выполнения имитационного моделирование системы ТЭ	

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	подготовка к лабораторным работам
2	работа с лекционным материалом и литературой
3	Подготовка к промежуточной аттестации.
4	Подготовка к текущему контролю.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

	`	,
№ п/п	Библиографическое описание	Место доступа
1	Кузнецов, С. М. Автоматизированное проектирование тяговых и трансформаторных подстанций: учебное пособие / С. М. Кузнецов. — Новосибирск: НГТУ, 2022. — 144 с. — ISBN 978-5-7782-4713-0.	https://e.lanbook.com/book/306080 (дата обращения: 28.02.2024).
2	Кузнецов, С. М. Автоматизированное проектирование устройств электрического транспорта: учебное пособие / С. М. Кузнецов. — Новосибирск: НГТУ, 2022. — 104 с. — ISBN 978-5-7782-4672-0	https://e.lanbook.com/book/306077 (дата обращения: 28.02.2024)
3	Пузина, Е. Ю. Компьютерное проектирование и моделирование систем электроснабжения: учебное пособие / Е. Ю. Пузина, В. В. Криворотова. — Иркутск: ИрГУПС, 2022. — 116 с	https://e.lanbook.com/book/342143 (дата обращения: 14.02.2024)
4	Извеков, Е. А. Проектирование систем электроснабжения. Курсовое проектирование / Е. А. Извеков, В. В. Картавцев, И. В. Лакомов. — 3-е	https://e.lanbook.com/book/231503 (дата обращения: 14.02.2024)

	изд., стер. — Санкт-Петербург : Лань, 2022. — 152 с. — ISBN 978-5-507-44642-1	
5	Дементьев, Ю. Н. Проектирование и расчет систем электроснабжения объектов и электротехнических установок: учебное пособие / Ю. Н. Дементьев. — Томск: ТПУ, 2019. — 363 с. — ISBN 978-5-4387-0858-2.	https://e.lanbook.com/book/246104 (дата обращения: 14.02.2024)

- 6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).
- 1. СЦБИСТ Железнодорожный информационный портал: Фотоматериалы, новая техника, информационные материалы, вопросы и ответы (http://scbist.com).
- 2. Информационный портал Научная электронная библиотека eLIBRARY.RU (www.elibrary.ru)
 - 3. Научно-техническая библиотека РУТ (МИИТ) (http://library.miit.ru)
 - 4. Российская Государственная Библиотека (http://www.rsl.ru)
- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Microsoft Windows, Microsoft Office, Microsoft Security Essentials, Embarcadero RAD Studio XE2 Professional Concurrent AppWave

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Маркерная доска или проектор, персональные компьютеры.

9. Форма промежуточной аттестации:

Зачет в 9 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, доцент, к.н. кафедры

«Электроэнергетика транспорта» В.В. Андреев

Согласовано:

Заведующий кафедрой ЭЭТ М.В. Шевлюгин

Председатель учебно-методической

комиссии С.В. Володин