МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы магистратуры по направлению подготовки 23.04.02 Наземные транспортно-технологические комплексы,

утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Системы автоматического управления и регулирования НТТК

Направление подготовки: 23.04.02 Наземные транспортно-

технологические комплексы

Направленность (профиль): Наземные транспортные комплексы

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 6216

Подписал: заведующий кафедрой Неклюдов Алексей

Николаевич

Дата: 01.06.2024

1. Общие сведения о дисциплине (модуле).

Целями освоения дисциплины (модуля) являются:

- усвоение студентами основ теории автоматического регулирования и управления;
 - овладение методологией теории регулирования и управления;
- овладение общими принципами построения математических моделей объектов, методами анализа и синтеза систем автоматического управления (САУ) и регулирования (САР).

Задачами дисциплины (модуля) являются:

- приобрести знания по общим принципам и тенденциям развития современных систем управления технологическими и производственными процессами;
- освоение основ построения и методов проектирования систем управления;
- ознакомление с современными техническими средствами управления и управляющей вычислительной техникой.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ПК-2** Способен осуществлять планирование, постановку и проведение теоретических и экспериментальных научных исследований по поиску и проверке новых идей совершенствования наземных транспортнотехнологических машин, их технологического оборудования и со-здания комплексов на их базе;
- **ПК-3** Способен анализировать результаты теоретических и экспериментальных исследований, давать рекомендации по совершенствованию технологических процессов транспортного производства, решать вопросы реализации результатов исследований и разработок, готовить научные публикации;
- **ПК-4** Способен анализировать и рассчитывать основные элементы конструкции и экспериментальным путем выбирать тип транспортнотехнологических машин под конкретные задачи;
- **ПК-7** Способен к разработке конструкции, конструкторской документации, проведению динамических, геометрических, прочностных расчетов и расчетов надежности узлов, агрегатов и систем.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- фундаментальные понятия: управляемость, наблюдаемость, стабилизируемость;
- методы концептуального проектирования систем автоматического управления;
- различные понятия устойчивости (устойчивость по Ляпунову, асимптотическая устойчивость, асимптотическая устойчивость в целом, абсолютная устойчивость, орбитальная устойчивость);
 - формулировки определений, теорем и критериев.

Уметь:

- описывать математические модели в пространстве состояний;
- строить по фазовой траектории временные характеристики и наоборот;
- формулировать задачи оптимального управления;
- определять подходы к решению различных нелинейных задач.

Владеть:

- методами исследования устойчивости нелинейных систем;
- методом анализа фазовой плоскости анализа и синтеза нелинейных систем;
- методом осуществдения гармонической линеаризации исследования автоколебаний;
 - методом построения функций Ляпунова;
 - методами построения оптимальных систем.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 10 з.е. (360 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов		
	Всего-	Семестр	
		№ 2	№3
Контактная работа при проведении учебных занятий (всего):	112	64	48

В том числе:			
Занятия лекционного типа	48	16	32
Занятия семинарского типа	64	48	16

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 248 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

$N_{\underline{0}}$	T /			
Π/Π	Тематика лекционных занятий / краткое содержание			
1	Введение. Общие сведения о системах управления НТТК.			
	Рассматриваемые вопросы:			
	- функциональная схема системы управления НТТК.			
2	Математические модели НТТК и задачи управления движением.			
	Рассматриваемые вопросы:			
	- учет упругости звеньев манипулятора. Математическое описание приводов;			
	- классификация способов управления.			
3	Планирование траекторий движения в пространстве обобщенных координат.			
	Рассматриваемые вопросы:			
	- резонансные цикловые приводы и манипуляторы;			
	- Совместное дискретное позиционное управление приводами манипулятора.			
4	Управление по вектору положения и по вектору скорости.			
	Рассматриваемые вопросы:			
	- непрерывное управление отдельным приводами;			
	- робастные системы непрерывного управления приводами.			
5	Планирование движения промышленного робота в рабочем пространстве.			
	Рассматриваемые вопросы:			
	- совместное непрерывное (контурное) управление приводами манипулятора.			
6	Динамическое управление движением манипулятора.			
	Рассматриваемые вопросы:			
	- системы управления манипулятором совместно по положению и силе (моменту).			
7	Способы динамического управления в задачах сборки и механообработки.			

$N_{\underline{0}}$			
Π/Π	Тематика лекционных занятий / краткое содержание		
	Рассматриваемые вопросы:		
	- тактильные датчики и матрицы;		
	- системы технического зрения и их элементы.		
8	Самонастраивающиеся системы управления.		
	Рассматриваемые вопросы:		
	- устройства сопряжения внешних устройств с управляющим контроллером;		
	- параллельная и последовательная передача информации. Виды помех и обеспечение		
	помехоустойчивости при передаче информации.		
9	Микропроцессорная реализация алгоритмов управления роботами.		
	Рассматриваемые вопросы:		
	- работа АИН при (2/3) – коммутации силовых тиристоров.		
10	Математическое описание привода НТТК.		
	Рассматриваемые вопросы:		
<u> </u>	- особенности электрического привода НТТК.		
11	Логический уровень системы управления многокомпонентной НТТК.		
	Рассматриваемые вопросы:		
	- регулируемый электропривод с обратной связью по скорости и току.		
12	Программное обеспечение НТТК.		
	Рассматриваемые вопросы:		
	- система импульсно-фазового управления.		
13 Элементы информационных систем. Первичные измерительные преобраз			
	Рассматриваемые вопросы:		
	- основы теории погрешностей.		
14	Информационные датчики и системы.		
	Рассматриваемые вопросы:		
	- оптоэлектронные измерения.		
15	Силомоментные датчики.		
	Рассматриваемые вопросы:		
	- силомоментные системы очувствления.		
16	Тактильные системы очувствления.		
	Рассматриваемые вопросы:		
	 назначение СТЗ. Принцип действия. 		
17	Системы технического зрения.		
	Рассматриваемые вопросы:		
	- назначение CT3. Принцип действия.		
18	Локационные системы очувствления.		
	Рассматриваемые вопросы:		
	- классификация и примеры локационных систем.		
19	Организация взаимосвязи информационной системы с распределенной системой		
	управления.		
	Рассматриваемые вопросы:		
	- структурированные кабельные системы.		
20	Микропроцессорная обработка данных.		
	Рассматриваемые вопросы:		
	- точечные и интервальные оценки результатов наблюдения.		

4.2. Занятия семинарского типа.

Лабораторные работы

<u>№</u>	Наименование лабораторных работ / краткое содержание			
п/п				
1	Управление сервоприводом с помощью библиотеки (Arduino/STM32).			
	В результате выполнения задания лабораторной работы рассматриваются вопросы применения			
	методов для управления сервоприводом с помощью библиотеки.			
2	Вывод показаний датчиков на LCD-дисплей (Arduino/STM32).			
	В результате выполнения задания лабораторной работы рассматриваются вопросы применения			
	методов вывода показаний датчиков на LCD-дисплей.			
3	Управление униполярным/биполярным шаговым двигателем с помощью библиотеки			
	и без нее (Arduino/STM32).			
	В результате выполнения задания лабораторной работы рассматриваются вопросы применения			
	методов управления униполярным шаговым двигателем с помощью библиотеки.			
4	Функции. Многозадачность на таймерах (Arduino/STM32).			
	В результате выполнения задания лабораторной работы рассматриваются вопросы применения			
	функций для рациональной организации программы и таймеров для реализации многозадачности.			
5	Управление сервоприводом с помощью библиотеки (Raspberry Pi).			
	В результате выполнения задания лабораторной работы рассматриваются вопросы исследования			
	характеристик операционного усилителя.			
6	Вывод показаний датчиков на LCD-дисплей (Raspberry Pi).			
	В результате выполнения задания лабораторной работы рассматриваются вопросы исследования			
	характеристик Н-моста.			
7	Управление униполярным/биполярным шаговым двигателем с помощью библиотеки			
	и без нее (Raspberry Pi).			
	В результате выполнения задания лабораторной работы рассматриваются вопросы исследования			
	характеристик выпрямителя.			
8	Функции. Многозадачность на таймерах (Raspberry Pi).			
	В результате выполнения задания лабораторной работы рассматриваются вопросы применения схем			
	замещения.			
	Писантирования			

Практические занятия

	1		
№ п/п	Тематика практических занятий/краткое содержание		
1	Изучение работы АЦП и компаратора в микроконтроллерах.		
	В результате выполнения практического задания изучаются аналоговые электронные устройства (АЦП, компараторы).		
2	Изучение работы с таймеров/счетчиков.		
	В результате выполнения практического задания изучаются таймеры/счетчики микроконтроллеров.		
3	Динамическая индикация и графические знакосинтезирующие дисплеи.		
	В результате выполнения практического задания изучаются варианты вывода значений параметров.		
4	Интерфейсы передачи данных.		
	В результате выполнения практического задания изучаются технологии передачи данных (I2C, UART, SPI, токовая петля).		
5	Устройства защиты и типовые устройства, работающие с микроконтроллером.		
	В результате выполнения практического задания изучаются варианты защиты микроконтроллеров.		
6	Изучение системы управления шаговым приводом.		
	В результате выполнения практического задания изучается система управления приводами НТТК.		
7	Изучение системы управления сервоприводом.		
	В результате выполнения практического задания изучается система управления приводом НТТК.		

$N_{\underline{0}}$			
п/п	Тематика практических занятий/краткое содержание		
8	Программирование и настройка ПИД регулятора сервопривода.		
	В результате выполнения практического задания изучаются методы настройки регуляторов.		
9	Микроконтроллеры семейства AVR (Atmel).		
	В результате выполнения практического задания изучается архитектура микроконтроллеров.		
10	Обработка прерываний в микроконтроллерах, внешние прерывания.		
	В результате выполнения практического задания изучается организация в программе прерываний.		
11	Оптические датчики.		
	В результате выполнения практического задания изучаются оптические датчики (принцип работы,		
	подключение, обработка сигналов микроконтроллером).		
12	Датчики магнитного поля, индуктивные и емкостные датчики.		
	В результате выполнения практического задания изучаются бесконтактные датчики (принцип работы,		
	подключение, обработка сигналов микроконтроллером).		
13	Ультразвуковые датчики.		
	В результате выполнения практического задания изучаются ультразвуковые датчики (принцип		
	работы, подключение, обработка сигналов микроконтроллером).		
14	Программирование ПЛК. Реверсивный счетчик и детектор фронтов.		
	В результате выполнения практического задания рассматриваются принцип работы и практическое		
1.5	применение реверсивного счетчика и детектора фронтов при программировании ПЛК.		
15	Управление освещением в производственном помещении.		
	В результате выполнения практического задания работы рассматриваются принцип написания и		
	отладки программы для реализации автоматического управления освещением в производственном помещении.		
16	Программирование ПЛК. Генератор периодических импульсов.		
10	В результате выполнения практического задания рассматриваются принцип работы и практическое		
	применение генератора периодических импульсов при программировании ПЛК.		
17	Программирование ПЛК. Сравнение ST, CFC, FBD.		
1,	В результате выполнения практического задания рассматривается сравнение языков		
	программирования ST, CFC, FBD на примере написания программы для реализации автоматического		
	управления.		
18	Программирование ПЛК. Программное управление конвейерной системой на основе		
	структуры приложения.		
	В результате выполнения практического задания рассматривается концепция структуры приложения		
	при написании программы для реализации автоматического управления конвейерной системой.		
19	Программирование ПЛК. Визуализация программы.		
	В результате выполнения практического задания рассматривается способ отладки программ на основе		
	использования визуализации с учетом привязки графических элементов мнемосхемы к переменным		
	программы.		
20	Программирование ПЛК. ПИД-регулятор.		
	В результате выполнения практического задания рассматриваются принцип работы и практическое		
	применение ПИД-регулятора при программировании ПЛК.		

4.3. Самостоятельная работа обучающихся.

]	№ п/п	Вид самостоятельной работы
	1	Текущая подготовка к практическим занятиям.
	2	Изучение дополнительной литературы.

3	Выполнение курсового проекта.
4	Выполнение курсовой работы.
5	Подготовка к промежуточной аттестации.
6	Подготовка к текущему контролю.

4.4. Примерный перечень тем видов работ

1. Примерный перечень тем курсовых проектов Варианты:

1 Оптимизация системы управления движением грузового автомобиля.

Задача: Разработать модель управления движением грузового автомобиля, оценить устойчивость системы и оптимизировать параметры для повышения безопасности и снижения времени в пути.

2 Моделирование системы автоматического управления распределением грузов на складе.

Задача: Создать модель управления распределением грузов, оценить устойчивость системы и оптимизировать процессы для повышения эффективности работы склада.

3 Система управления движением поездов на железнодорожном узле.

Задача: Построить модель управления движением поездов, провести анализ устойчивости и оптимизировать расписание для минимизации задержек и повышения пропускной способности.

4 Оптимизация системы управления дорожным движением в городском районе.

Задача: Моделировать систему управления светофорами и дорожными потоками, оценить устойчивость и оптимизировать для снижения заторов и повышения безопасности.

5 Управление подачей топлива в автозаправочной станции.

Задача: Разработать модель управления подачей топлива, провести анализ устойчивости и оптимизировать систему для повышения эффективности обслуживания клиентов.

6 Оптимизация системы управления маршрутами общественного транспорта.

Задача: Создать модель управления маршрутами автобусов или трамваев, оценить устойчивость и оптимизировать маршруты для повышения доступности и сокращения времени ожидания.

7 Моделирование системы автоматического управления погрузкой и разгрузкой на терминале.

Задача: Построить модель управления процессами погрузки и разгрузки, оценить устойчивость и оптимизировать операции для сокращения времени обработки грузов.

8 Оптимизация системы управления движением легкового автомобиля с учетом условий дорожного движения.

Задача: Разработать модель управления движением легкового автомобиля, провести анализ устойчивости и оптимизировать параметры для повышения комфорта и безопасности.

9 Система автоматического управления парковкой автомобилей.

Задача: Создать модель управления парковкой, оценить устойчивость системы и оптимизировать для повышения эффективности использования парковочных мест.

10 Управление логистикой доставки товаров в городских условиях.

Задача: Моделировать систему управления логистическими процессами, оценить устойчивость и оптимизировать маршруты доставки для повышения скорости и снижения затрат.

2. Примерный перечень тем курсовых работ Варианты:

1 Тема: "Анализ и оптимизация САУ скорости движения грузового автомобиля (САУ СД ГА) Вар_№".

Задание: Построить модель САУ, исследовать ее, оптимизировать и оценить качество полученной САУ.

Исходные данные: Функциональная схема САУ СД ГА и параметры ее элементов.

Дополнительное задание: Исследовать влияние дорожных условий на динамику системы.

2 Тема: "Оптимизация САУ распределения грузов на складе (САУ РГС) Вар_№".

Задание: Построить модель САУ, исследовать ее, оптимизировать и оценить качество полученной САУ.

Исходные данные: Функциональная схема САУ РГС и параметры ее элементов.

Дополнительное задание: Учитывать ограничения по времени обработки грузов.

3 Тема: "Анализ и оптимизация САУ движения поезда на железнодорожном узле (САУ ДП ЖУ) Вар №".

Задание: Построить модель САУ, исследовать ее, оптимизировать и

оценить качество полученной САУ.

Исходные данные: Функциональная схема САУ ДП ЖУ и параметры ее элементов.

Дополнительное задание: Исследовать влияние сигналов светофоров на движение поезда.

4 Тема: "Оптимизация САУ управления дорожным движением в городе (САУ УДД Г) Вар №".

Задание: Построить модель САУ, исследовать ее, оптимизировать и оценить качество полученной САУ.

Исходные данные: Функциональная схема САУ УДД Г и параметры ее элементов.

Дополнительное задание: Учитывать влияние пиковых нагрузок на систему.

5 Тема: "Анализ и оптимизация САУ подачи топлива на автозаправочной станции (САУ ПТ АЗС) Вар №".

Задание: Построить модель САУ, исследовать ее, оптимизировать и оценить качество полученной САУ.

Исходные данные: Функциональная схема САУ ПТ A3C и параметры ее элементов.

Дополнительное задание: Исследовать влияние колебаний спроса на подачу топлива.

6 Тема: "Оптимизация САУ маршрутизации общественного транспорта (САУ МОТ) Вар №".

Задание: Построить модель САУ, исследовать ее, оптимизировать и оценить качество полученной САУ.

Исходные данные: Функциональная схема САУ МОТ и параметры ее элементов.

Дополнительное задание: Учитывать влияние времени суток на загрузку маршрутов.

7 Тема: "Анализ и оптимизация САУ погрузки и разгрузки на терминале (САУ ПР Т) Вар №".

Задание: Построить модель САУ, исследовать ее, оптимизировать и оценить качество полученной САУ.

Исходные данные: Функциональная схема САУ ПР T и параметры ее элементов.

Дополнительное задание: Исследовать влияние очередей на время погрузки и разгрузки.

8 Тема: "Оптимизация САУ управления движением легкового автомобиля (САУ ДЛА) Вар_№".

Задание: Построить модель САУ, исследовать ее, оптимизировать и оценить качество полученной САУ.

Исходные данные: Функциональная схема САУ ДЛА и параметры ее элементов.

Дополнительное задание: Учитывать влияние погодных условий на управление.

9 Тема: "Анализ и оптимизация САУ парковки автомобилей (САУ ПА) Вар №".

Задание: Построить модель САУ, исследовать ее, оптимизировать и оценить качество полученной САУ.

Исходные данные: Функциональная схема САУ ПА и параметры ее элементов.

Дополнительное задание: Исследовать влияние плотности потока автомобилей на систему.

10 Тема: "Оптимизация САУ логистики доставки товаров в городских условиях (САУ ЛДТ) Вар №".

Задание: Построить модель САУ, исследовать ее, оптимизировать и оценить качество полученной САУ.

Исходные данные: Функциональная схема САУ ЛДТ и параметры ее элементов.

Дополнительное задание: Учитывать влияние пробок и дорожных работ на маршруты доставки.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№	Библиографическое описание	Место доступа
п/п	1 1	
1	Ким, Д. П. Теория автоматического управления.	URL: https://urait.ru/bcode/491183
	Многомерные, нелинейные, оптимальные и	(дата обращения: 12.04.2023)
	адаптивные системы: учебник и практикум для	Текст: электронный.
	вузов / Д. П. Ким. — 3-е изд., испр. и доп. — Москва	
	: Издательство Юрайт, 2022. — 441 с.	
2	Жмудь, В. А. Моделирование замкнутых систем	URL: https://urait.ru/bcode/492073
	автоматического управления: учебное пособие для	(дата обращения: 12.04.2023)
	вузов / В. А. Жмудь. — 2-е изд., испр. и доп. —	Текст: электронный.
	Москва: Издательство Юрайт, 2022. — 128 с.	
3	Антимиров, В. М. Системы автоматического	URL: https://urait.ru/bcode/492240
	управления: учебное пособие для вузов / В. М.	(дата обращения: 12.04.2023)
	Антимиров ; под научной редакцией В. В. Телицина.	Текст: электронный.
	— Москва : Издательство Юрайт, 2022. — 91 с.	
4	Шойко, В. П. Автоматическое регулирование в	URL:

	электрических системах : учебное пособие / В. П. Шойко. — 2-е изд. — Новосибирск : НГТУ, 2017. — 195 с. — ISBN 978-5-7782-3371-3.	https://e.lanbook.com/book/118159 (дата обращения: 12.04.2023) Текст: электронный.
5	Карпов, А. Г. Цифровые системы автоматического регулирования: учебное пособие / А. Г. Карпов. — Москва: ТУСУР, 2015. — 216 с. — ISBN 978-5-86889-716-0.	URL: https://e.lanbook.com/book/110296 (дата обращения: 12.04.2023) Текст: электронный.
6	Озеркин, Д. В. Основы автоматики и системы автоматического управления: учебное пособие / Д. В. Озеркин. — Москва: ТУСУР, 2012. — 179 с.	URL: https://e.lanbook.com/book/10906 (дата обращения: 12.04.2023) Текст: электронный.

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (https://www.miit.ru/).

Научно-техническая библиотека РУТ (МИИТ) (http:/library.miit.ru).

Образовательная платформа «Юрайт» (https://urait.ru/).

Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/).

Электронно-библиотечная система ibooks.ru (http://ibooks.ru/).

Электронно-библиотечная система Znanium (http://znanium.ru/).

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Microsoft Internet Explorer (или другой браузер).

Операционная система Microsoft Windows.

Microsoft Office.

Microsoft Project.

- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).
- 1. Рабочее место преподавателя с персональным компьютером, подключённым к сетям INTERNET.
- 2. Программное обеспечение для создания текстовых и графических документов, презентаций.
- 3. Специализированная лекционная аудитория с мультимедиа аппаратурой.
 - 4. Компьютерный класс для проведения практических занятий.

9. Форма промежуточной аттестации:

Курсовая работа во 2 семестре. Курсовой проект в 3 семестре. Экзамен во 2, 3 семестрах.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, к.н. кафедры «Наземные транспортно-технологические средства»

А.И. Пушкин

Согласовано:

Заведующий кафедрой НТТС А.Н. Неклюдов

С.В. Володин

Председатель учебно-методической

комиссии С.В. Володин