МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы магистратуры по направлению подготовки 15.04.06 Мехатроника и робототехника, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Системы автоматического управления и регулирования роботов и роботехнических систем

Направление подготовки: 15.04.06 Мехатроника и робототехника

Направленность (профиль): Роботы и робототехнические системы

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 6216

Подписал: заведующий кафедрой Неклюдов Алексей

Николаевич

Дата: 01.06.2024

1. Общие сведения о дисциплине (модуле).

Целями освоения дисциплины (модуля) являются:

- усвоение студентами основ теории автоматического регулирования и управления;
 - овладение методологией теории регулирования и управления;
- овладение общими принципами построения математических моделей объектов, методами анализа и синтеза систем автоматического управления (САУ) и регулирования (САР).

Задачами дисциплины (модуля) являются:

- приобрести знания по общим принципам и тенденциям развития современных систем управления технологическими и производственными процессами;
- освоение основ построения и методов проектирования систем управления;
- ознакомление с современными техническими средствами управления и управляющей вычислительной техникой.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- ОПК-11 - Способен организовывать разработку и применение алгоритмов и современных цифровых программных методов расчетов и устройств и подсистем мехатронных проектирования отдельных робототехнических систем с использованием стандартных исполнительных и устройств, управляющих средств автоматики, измерительной вычислительной техники техническим соответствии заданием, разрабатывать цифровые алгоритмы И программы управления робототехнических систем;
- **ОПК-12** Способен организовывать монтаж, наладку, настройку и сдачу в эксплуатацию опытных образцов мехатронных и робототехнических систем, их подсистем и отдельных модулей;
- **ПК-1** Способен составлять математические модели мехатронных и робототехнических систем, их подсистем, включая исполнительные, информационно-сенсорные и управляющие модули, с применением методов формальной логики, методов конечных автоматов, сетей Петри, методов искусственного интеллекта, нечеткой логики, генетических алгоритмов, искусственных нейронных и нейро-нечетких сетей;

- **ПК-2** Способен использовать имеющиеся программные пакеты и, при необходимости, разрабатывать новое программное обеспечение, необходимое для обработки информации и управления в мехатронных и робототехнических системах, а также для их проектирования;
- **ПК-3** Способен разрабатывать экспериментальные макеты управляющих, информационных и исполнительных модулей мехатронных и робототехнических систем и проводить их исследование с применением современных информационных техно-логий;
- **ПК-5** Способен разрабатывать методики проведения экспериментов и проводить эксперименты на действующих макетах и образцах мехатронных и робототехнических систем и их подсистем, обрабатывать результаты с применением современных информационных технологий и технических средств;
- **ПК-10** Готов к выполнению настройки, наладки, сопровождению эксплуатации оборудования мехатронных и робототехнических систем;
- **ПК-11** Готов осуществлять контроль, обслуживание и обеспечение надежности и безопасности оборудования мехатронных и робототехнических систем.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

знать основные принципы построения систем автоматического управления роботами;

знать математические модели и методы анализа систем управления робототехническими системами;

знать классификацию и особенности различных типов регуляторов;

знать методы синтеза систем управления для стабилизации и слежения;

знать принципы построения систем многоконтурного и адаптивного управления;

знать особенности управления многозвенными и многосуставными роботами;

знать методы анализа устойчивости и качества систем управления роботами;

знать современные программные средства моделирования систем автоматического управления.

Уметь:

уметь разрабатывать структурные схемы систем автоматического управления роботами;

уметь составлять математические модели динамики робототехнических систем;

уметь синтезировать параметры регуляторов для систем стабилизации и слежения;

уметь анализировать устойчивость и качество систем управления;

уметь проектировать системы управления для роботов с различными кинематическими схемами;

уметь настраивать и оптимизировать параметры систем регулирования; уметь использовать программные комплексы для моделирования систем управления;

уметь проводить экспериментальные исследования систем автоматического управления.

Владеть:

владеть методами математического моделирования динамики робототехнических систем;

владеть методиками синтеза систем автоматического управления; владеть навыками настройки и оптимизации параметров регуляторов; владеть методами анализа устойчивости и качества систем управления; владеть современными программными средствами моделирования систем управления;

владеть практическими навыками проектирования систем регулирования для роботов;

владеть методами экспериментального исследования систем автоматического управления;

владеть технологиями внедрения и отладки систем управления на реальных роботах.

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 11 з.е. (396 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

		Количество часов		
Тип учебных занятий	Всего	Семестр		
		№ 2	№3	
Контактная работа при проведении учебных занятий (всего):	128	80	48	
В том числе:				
Занятия лекционного типа	64	32	32	
Занятия семинарского типа	64	48	16	

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 268 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

No				
	Тематика лекционных занятий / краткое содержание			
п/п				
1	Введение. Общие сведения о системах управления роботов.			
	Рассматриваемые вопросы:			
	- функциональная схема системы управления роботов.			
2	Математические модели роботов и задачи управления движением.			
	Рассматриваемые вопросы:			
	- учет упругости звеньев манипулятора. Математическое описание приводов;			
	- классификация способов управления.			
3	Планирование траекторий движения в пространстве обобщенных координат.			
	Рассматриваемые вопросы:			
	- резонансные цикловые приводы и манипуляторы;			
	- Совместное дискретное позиционное управление приводами манипулятора.			
4	Управление по вектору положения и по вектору скорости.			
	Рассматриваемые вопросы:			
	- непрерывное управление отдельным приводами;			
	- робастные системы непрерывного управления приводами.			
5	Планирование движения промышленного робота в рабочем пространстве.			
	Рассматриваемые вопросы:			
	- совместное непрерывное (контурное) управление приводами манипулятора.			

No				
п/п	Тематика лекционных занятий / краткое содержание			
6	Динамическое управление движением манипулятора.			
	Рассматриваемые вопросы:			
	- системы управления манипулятором совместно по положению и силе (моменту).			
7	Способы динамического управления в задачах сборки и механообработки.			
	Рассматриваемые вопросы:			
	- тактильные датчики и матрицы;			
- системы технического зрения и их элементы.				
8	Самонастраивающиеся системы управления.			
	Рассматриваемые вопросы:			
	- устройства сопряжения внешних устройств с управляющим контроллером;			
	- параллельная и последовательная передача информации. Виды помех и обеспечение			
	помехоустойчивости при передаче информации.			
9	Микропроцессорная реализация алгоритмов управления роботами.			
	Рассматриваемые вопросы:			
	- работа АИН при (2/3) – коммутации силовых тиристоров.			
10	Математическое описание привода РТС.			
	Рассматриваемые вопросы:			
	- особенности электрического привода РТС.			
11	Логический уровень системы управления многокомпонентной РТС.			
	Рассматриваемые вопросы:			
	- регулируемый электропривод с обратной связью по скорости и току.			
12	Программное обеспечение РТС.			
	Рассматриваемые вопросы:			
	- система импульсно-фазового управления.			
13	Элементы информационных систем. Первичные измерительные преобразователи.			
	Рассматриваемые вопросы:			
4.4	- основы теории погрешностей.			
14	Информационные датчики и системы.			
	Рассматриваемые вопросы:			
	- оптоэлектронные измерения.			
15	Силомоментные датчики.			
	Рассматриваемые вопросы:			
1.0	- силомоментные системы очувствления.			
16	Тактильные системы очувствления.			
	Рассматриваемые вопросы:			
177	- назначение СТЗ. Принцип действия.			
17	Системы технического зрения.			
	Рассматриваемые вопросы:			
1.0	- назначение СТЗ. Принцип действия.			
18	Локационные системы очувствления.			
	Рассматриваемые вопросы:			
10	- классификация и примеры локационных систем.			
19	Организация взаимосвязи информационной системы с распределенной системой			
	управления.			
	Рассматриваемые вопросы:			
	- структурированные кабельные системы.			

№ п/п	Тематика лекционных занятий / краткое содержание
20	Микропроцессорная обработка данных.
	Рассматриваемые вопросы:
	- точечные и интервальные оценки результатов наблюдения.

4.2. Занятия семинарского типа.

Лабораторные работы

№	II		
Π/Π	Наименование лабораторных работ / краткое содержание		
1	Управление сервоприводом с помощью библиотеки (Arduino/STM32).		
	В результате выполнения задания лабораторной работы рассматриваются вопросы применения методов для управления сервоприводом с помощью библиотеки.		
2	Вывод показаний датчиков на LCD-дисплей (Arduino/STM32).		
	В результате выполнения задания лабораторной работы рассматриваются вопросы применения методов вывода показаний датчиков на LCD-дисплей.		
3	Управление униполярным/биполярным шаговым двигателем с помощью		
	библиотеки и без нее (Arduino/STM32).		
	В результате выполнения задания лабораторной работы рассматриваются вопросы применения		
	методов управления униполярным шаговым двигателем с помощью библиотеки.		
4	Функции. Многозадачность на таймерах (Arduino/STM32).		
	В результате выполнения задания лабораторной работы рассматриваются вопросы применения		
	функций для рациональной организации программы и таймеров для реализации многозадачности.		
5	Управление сервоприводом с помощью библиотеки (Raspberry Pi).		
	В результате выполнения задания лабораторной работы рассматриваются вопросы исследования		
	характеристик операционного усилителя.		
6	Вывод показаний датчиков на LCD-дисплей (Raspberry Pi).		
	В результате выполнения задания лабораторной работы рассматриваются вопросы исследования		
	характеристик Н-моста.		
7	Управление униполярным/биполярным шаговым двигателем с помощью		
	библиотеки и без нее (Raspberry Pi).		
	В результате выполнения задания лабораторной работы рассматриваются вопросы исследования		
	характеристик выпрямителя.		
8	Функции. Многозадачность на таймерах (Raspberry Pi).		
	В результате выполнения задания лабораторной работы рассматриваются вопросы применения схем		
	замещения.		

Практические занятия

№ п/п	Тематика практических занятий/краткое содержание
1	Изучение работы АЦП и компаратора в микроконтроллерах.
	В результате выполнения практического задания изучаются аналоговые электронные устройства
	(АЦП, компараторы).
2	Изучение работы с таймеров/счетчиков.
	В результате выполнения практического задания изучаются таймеры/счетчики микроконтроллеров.
3	Динамическая индикация и графические знакосинтезирующие дисплеи.
	В результате выполнения практического задания изучаются варианты вывода значений параметров.

No		
п/п	Тематика практических занятий/краткое содержание	
4	Интерфейсы передачи данных.	
	В результате выполнения практического задания изучаются технологии передачи данных (I2C,	
	UART, SPI, токовая петля).	
5	Устройства защиты и типовые устройства, работающие с микроконтроллером.	
	В результате выполнения практического задания изучаются варианты защиты микроконтроллеров.	
6	Изучение системы управления шаговым приводом.	
	В результате выполнения практического задания изучается система управления приводами НТТК.	
7	Изучение системы управления сервоприводом.	
	В результате выполнения практического задания изучается система управления приводом НТТК.	
8	Программирование и настройка ПИД регулятора сервопривода.	
	В результате выполнения практического задания изучаются методы настройки регуляторов.	
9	Микроконтроллеры семейства AVR (Atmel).	
	В результате выполнения практического задания изучается архитектура микроконтроллеров.	
10	Обработка прерываний в микроконтроллерах, внешние прерывания.	
	В результате выполнения практического задания изучается организация в программе прерываний.	
11	Оптические датчики.	
	В результате выполнения практического задания изучаются оптические датчики (принцип работы,	
10	подключение, обработка сигналов микроконтроллером).	
12	Датчики магнитного поля, индуктивные и емкостные датчики.	
	В результате выполнения практического задания изучаются бесконтактные датчики (принцип	
12	работы, подключение, обработка сигналов микроконтроллером).	
13		
	В результате выполнения практического задания изучаются ультразвуковые датчики (принцип работы, подключение, обработка сигналов микроконтроллером).	
14	Программирование ПЛК. Реверсивный счетчик и детектор фронтов.	
1	В результате выполнения практического задания рассматриваются принцип работы и практическое	
	применение реверсивного счетчика и детектора фронтов при программировании ПЛК.	
15	Управление освещением в производственном помещении.	
	В результате выполнения практического задания работы рассматриваются принцип написания и	
	отладки программы для реализации автоматического управления освещением в производственном	
	помещении.	
16	Программирование ПЛК. Генератор периодических импульсов.	
	В результате выполнения практического задания рассматриваются принцип работы и практическое	
	применение генератора периодических импульсов при программировании ПЛК.	
17	Программирование ПЛК. Сравнение ST, CFC, FBD.	
	В результате выполнения практического задания рассматривается сравнение языков	
	программирования ST, CFC, FBD на примере написания программы для реализации	
18	автоматического управления.	
10	Программирование ПЛК. Программное управление конвейерной системой на	
	основе структуры приложения.	
	В результате выполнения практического задания рассматривается концепция структуры приложения при написании программы для реализации автоматического управления конвейерной	
	системой.	
19	Программирование ПЛК. Визуализация программы.	
	В результате выполнения практического задания рассматривается способ отладки программ на	
	основе использования визуализации с учетом привязки графических элементов мнемосхемы к	
	переменным программы.	

№ п/п	Тематика практических занятий/краткое содержание
20	Программирование ПЛК. ПИД-регулятор.
	В результате выполнения практического задания рассматриваются принцип работы и практическое
	применение ПИД-регулятора при программировании ПЛК.

4.3. Самостоятельная работа обучающихся.

No	Вид самостоятельной работы	
Π/Π	Вид самостоятельной расоты	
1	Текущая подготовка к практическим занятиям.	
2	Изучение дополнительной литературы.	
3	Выполнение курсового проекта.	
4	Выполнение курсовой работы.	
5	Подготовка к промежуточной аттестации.	
6	Подготовка к текущему контролю.	

4.4. Примерный перечень тем видов работ

2. Примерный перечень тем курсовых работ

Вариант 1 "Разработка системы обработки данных от гироскопа"

Вариант 2 "Разработка системы обработки данных от акслерометра"

Вариант 3 "Разработка системы обработки данных от тензодатчика"

Вариант 4 "Разработка системы обработки данных от датчика расстояния"

Вариант 5 "Разработка системы обработки данных от камеры технического зрения"

Вариант 6 "Разработка системы классификации озображений"

Вариант 7 "Разработка системы прогнозирования отказов"

Вариант 8 "Разработка системы обработки данных от комплекса датчиков"

Вариант 9 "Разработка системы обработки данных от силомоментного датчика промышленного робота"

Вариант 10 "Разработка системы радиосвязи для мобильных роботов"

1. Примерный перечень тем курсовых проектов

Вариант 1 "Разработка системы управления роботизированной ячейки для покраски подвижного состава"

Вариант 2 "Разработка системы управления роботизированной ячейки для резки элементов подвижного состава"

Вариант 3 "Разработка системы управления роботизированной ячейки для ремонта элементов железнодорожного пути"

Вариант 4 "Разработка системы управления роботизированной ячейки для ремонта элементов подвижного состава"

Вариант 5 "Разработка системы управления роботизированной ячейки для неразрушающего контроля элементов подвижного состава"

Вариант 6 "Разработка системы управления с компьютерным зрением"

Вариант 7 "Разработка системы управления роботизированной ячейки для классификации объетов"

Вариант 8 "Разработка системы управления роботизированной ячейки для сортировки объектов"

Вариант 9 "Разработка системы управления для распознавания дефетов объектов"

Вариант 10 "Разработка системы управления роботизированной ячейки для герметизации швов"

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

CLDC	сиий дисциплины (модули).	
№ п/п	Библиографическое описание	Место доступа
1	Ким, Д. П. Теория автоматического управления. Многомерные, нелинейные, оптимальные и адаптивные системы: учебник и практикум для вузов / Д. П. Ким. — 3-е изд., испр. и доп. — Москва: Издательство Юрайт, 2022. — 441 с.	URL: https://urait.ru/bcode/491183 (дата обращения: 12.04.2023) Текст: электронный.
2	Жмудь, В. А. Моделирование замкнутых систем автоматического управления: учебное пособие для вузов / В. А. Жмудь. — 2-е изд., испр. и доп. — Москва: Издательство Юрайт, 2022. — 128 с.	URL: https://urait.ru/bcode/492073 (дата обращения: 12.04.2023) Текст: электронный.
3	Антимиров, В. М. Системы автоматического управления: учебное пособие для вузов / В. М. Антимиров; под научной редакцией В. В. Телицина. — Москва: Издательство Юрайт, 2022. — 91 с.	URL: https://urait.ru/bcode/492240 (дата обращения: 12.04.2023) Текст: электронный.
4	Шойко, В. П. Автоматическое регулирование в электрических системах : учебное пособие / В. П. Шойко. — 2-е изд. — Новосибирск : НГТУ, 2017. — 195 с. — ISBN 978-5-7782-3371-3.	URL: https://e.lanbook.com/book/118159 (дата обращения: 12.04.2023) Текст: электронный.
5	Карпов, А. Г. Цифровые системы автоматического регулирования : учебное пособие / А. Г. Карпов.	URL: https://e.lanbook.com/book/110296

	— Москва : ТУСУР, 2015. — 216 с. — ISBN 978-	(дата обращения: 12.04.2023)
	5-86889-716-0.	Текст: электронный.
6	Озеркин, Д. В. Основы автоматики и системы автоматического управления: учебное пособие /	URL: https://e.lanbook.com/book/10906
	Д. В. Озеркин. — Москва : ТУСУР, 2012. — 179 с.	(дата обращения: 12.04.2023) Текст: электронный.
7	Управление наземными транспортнотехнологическими средствами: учебник /В.В. Шаповалов и др. — ФГБУ ДПО «Учебнометодический центр по образованию на железнодорожном транспорте», 2018. — 263 с.	URL: http://umczdt.ru/books/40/18736 (дата обращения: 12.04.2023) Текст: электронный.

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (https://www.miit.ru/).

Научно-техническая библиотека РУТ (МИИТ) (http:/library.miit.ru).

Образовательная платформа «Юрайт» (https://urait.ru/).

Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/).

Электронно-библиотечная система ibooks.ru (http://ibooks.ru/).

Электронно-библиотечная система Znanium (http://znanium.ru/).

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Microsoft Internet Explorer (или другой браузер).

Операционная система Microsoft Windows.

Microsoft Office.

Microsoft Project.

- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).
- 1. Рабочее место преподавателя с персональным компьютером, подключённым к сетям INTERNET.
- 2. Программное обеспечение для создания текстовых и графических документов, презентаций.
- 3. Специализированная лекционная аудитория с мультимедиа аппаратурой.
 - 4. Компьютерный класс для проведения практических занятий.

9. Форма промежуточной аттестации:

Курсовая работа во 2 семестре. Курсовой проект в 3 семестре. Экзамен во 2, 3 семестрах.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, к.н. кафедры «Наземные транспортно-технологические средства»

доцент, доцент, к.н. кафедры «Наземные транспортно-

технологические средства» А.В. Мишин

Согласовано:

Заведующий кафедрой НТТС А.Н. Неклюдов

А.И. Пушкин

Председатель учебно-методической

комиссии С.В. Володин