МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 15.03.06 Мехатроника и робототехника, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Системы автоматического управления электроприводом ПСЖД

Направление подготовки: 15.03.06 Мехатроника и робототехника

Направленность (профиль): Электрооборудование и электропривод

подвижного состава

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5214

Подписал: заведующий кафедрой Пудовиков Олег

Евгеньевич

Дата: 27.06.2025

1. Общие сведения о дисциплине (модуле).

Целью изучения дисциплины (модуля) является:

- формирование у студентов комплексных теоретических знаний и практических навыков в области проектирования, анализа, настройки и эксплуатации систем автоматического управления электроприводами подвижного состава железных дорог.

Задачами изучения дисциплины (модуля) являются:

- изучение принципов действия, структурных схем, функциональных элементов и алгоритмов работы современных САУ тяговым и вспомогательным электроприводом ПСЖД;
- освоение методов математического моделирования, анализа статических и динамических характеристик, устойчивости и качества процессов управления в САУ электропривода ПСЖД.
- формирование навыков расчета и выбора параметров регуляторов, синтеза законов управления для типовых систем управления электроприводами ПСЖД.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ПК-3** Способен осуществлять выполнение экспериментов и оформление результатов исследований и разработаток в области проектирования ПСЖД;
- **ПК-5** Способен осуществлять подготовку текстовой и графической частей эскизного и технического проектов электропривода и электрооборудования ПСЖД.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- принципы построения и функциональные схемы систем автоматического управления тяговым и вспомогательным электроприводом ПСЖД;
- принципы построения математических моделей элементов САУ электропривода;
- типовые законы регулирования и методы их настройки для контуров тока, скорости, положения.

Уметь:

- анализировать структурные схемы САУ электропривода ПСЖД и принципы их работы;
- рассчитывать параметры регуляторов тока, скорости и положения для заданных требований к динамике и точности;
- моделировать и анализировать статические и динамические характеристики САУ в программных средах.

Владеть:

- навыками расчета и проектирования систем подчиненного регулирования координат электропривода;
- методами настройки регуляторов для контуров управления тяговым приводом;
- технологиями моделирования САУ электропривода в цифровых средах с анализом переходных процессов.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 7 з.е. (252 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

	Количество часов			
Тип учебных занятий	Всего	Сем	Семестр	
	Beero	№6	№7	
Контактная работа при проведении учебных занятий (всего):	144	64	80	
В том числе:				
Занятия лекционного типа	64	32	32	
Занятия семинарского типа	80	32	48	

3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 108 академических часа (ов).

- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

No	Томотуме доминоми и разделий / утотуе с со черующе		
Π/Π	Тематика лекционных занятий / краткое содержание		
1	Введение в системы автоматического управления электроприводом ПСЖД Рассматриваемые вопросы: Цели и задачи автоматического управления электроприводом ПСЖД; Особенности ПСЖД как объекта управления; Основные структуры систем управления электроприводом ПСЖД; Требования к системам управления ПСЖД (надежность, безопасность, энергоэффективность).		
2 Математические модели элементов САУ электропривода ПСЖД			
	Рассматриваемые вопросы: Модели тяговых электродвигателей (ТЭД) постоянного и переменного тока; Модели преобразовательной техники (выпрямители, инверторы, регуляторы); Модели механической части (привод колесной пары, редуктор); Модели датчиков (скорости, тока, положения).		
3	Типовые законы регулирования в САУ электропривода ПСЖД		
	Рассматриваемые вопросы: Принципы П, ПИ, ПИД-регулирования; Выбор и расчет параметров регуляторов; Особенности реализации ПИД-регуляторов в цифровых системах; Применение ПИД-регуляторов для управления моментом и скоростью ТЭД.		
4	Системы подчиненного регулирования координат электропривода ПСЖД		
	Рассматриваемые вопросы: Принцип подчиненного регулирования; Каскадные структуры (контуры тока, скорости, положения); Синтез параметров регуляторов в каскадной структуре; Преимущества и недостатки подчиненного регулирования для ПСЖД.		
5	Автоматическое управление пуском электроподвижного состава (ЭПС)		
	Рассматриваемые вопросы: Законы изменения тока и момента при пуске; Управление разгоном с ограничением тока и ускорения; Особенности пуска при различных схемах соединения ТЭД; Переходные процессы при пуске и их оптимизация.		
6	Автоматическое управление торможением электроподвижного состава (ЭПС)		
	Рассматриваемые вопросы: Виды электрического торможения (рекуперативное, реостатное); Законы управления тормозным моментом; Организация плавного перехода из режима тяги в режим торможения; Управление рекуперацией и ее стабилизация.		
7	Регулирование скорости движения ПСЖД		
	Рассматриваемые вопросы: Задачи и структуры систем стабилизации скорости; Влияние внешних возмущений (уклон, кривые) на скорость; Методы компенсации возмущений; Точность поддержания скорости и ее зависимость от параметров САУ.		
8	Управление моментом тягового электродвигателя		
	Рассматриваемые вопросы: Задачи регулирования момента; Методы управления моментом двигателей постоянного тока (изменение напряжения, потока); Векторные и скалярные методы		

No			
п/п	Тематика лекционных занятий / краткое содержание		
	управления моментом асинхронных и синхронных двигателей; Точность и быстродействие систем управления моментом.		
9	Управление возбуждением тяговых двигателей постоянного тока		
	Рассматриваемые вопросы: Способы регулирования магнитного потока; Системы автоматического ослабления поля (АОП); Критерии включения и отключения ступеней АОП; Влияние АОП на энергетические показатели и характеристики привода.		
10	Частотное управление асинхронным тяговым приводом (скалярное управление)		
	Рассматриваемые вопросы: Принцип частотного управления; Закон U/f = const и его модификации; Ограничения скалярного управления; Применение скалярного управления на ПСЖД.		
11	Векторное управление асинхронным тяговым приводом		
	Рассматриваемые вопросы: Принципы векторного управления (ориентация по полю); Математические основы (преобразование координат); Системы прямого и косвенного векторного управления; Преимущества векторного управления для тяговых приводов ПСЖД.		
12	Векторное управление синхронным тяговым приводом		
	Рассматриваемые вопросы: Особенности управления СДПМ и СДВ; Методы ориентации (по положению ротора, по потокосцеплению); Управление моментом и потоком; Регулирование скорости и положения ротора.		
13	Системы автоматического регулирования напряжения в контактной сети		
	Рассматриваемые вопросы: Причины колебаний напряжения в сети; Влияние колебаний напряжения на работу САУ электропривода; Методы стабилизации напряжения на входе преобразователя (регуляторы звена постоянного тока); Компенсация провалов напряжения.		
14	Автоматическое ограничение нежелательных режимов работы электропривода		
	ПСЖД		
	Рассматриваемые вопросы: Защита от перегрузок по току и моменту; Защита от превышения скорости; Боксование и юз колесных пар		
15	Системы автоматического управления многоосными экипажами ПСЖД		
	Рассматриваемые вопросы: Особенности управления групповым приводом; Синхронизация работы нескольких двигателей; Распределение нагрузки между осями; Управление приводами тележек.		
16	Адаптивные системы управления электроприводом ПСЖД		
	Рассматриваемые вопросы: Необходимость адаптации; Методы адаптации параметров регуляторов; Системы с эталонной моделью (МРС); Применение адаптивного управления для компенсации изменяющихся параметров привода и условий движения.		
17	Нелинейные системы управления электроприводом ПСЖД		
	Рассматриваемые вопросы: Проявление нелинейностей в тяговом приводе; Методы синтеза		
	нелинейных регуляторов (скользящие режимы); Применение нелинейных методов для повышения		
	быстродействия и робастности.		
18	Цифровые системы управления электроприводом ПСЖД		
	Рассматриваемые вопросы: Архитектура цифровых САУ (микроконтроллеры, DSP, FPGA); Дискретизация непрерывных сигналов и законов управления; Особенности реализации цифровых		
10	регуляторов; Преимущества и проблемы цифрового управления.		
19	Микропроцессорные устройства управления тяговым приводом Рассматриваемые вопросы: Структура и функции микропроцессорных контроллеров; Программное		
20	обеспечение САУ; Алгоритмы управления в реальном времени; Интерфейсы связи (CAN, Ethernet).		
20	Датчики в САУ электропривода ПСЖД Рассматриваемые вопросы: Типы датчиков (тока, напряжения, скорости/положения, температуры); Принципы действия, характеристики, точность; Особенности установки и эксплуатации на ПСЖД; Бессенсорные методы измерения.		
	<u> </u>		

№		
п/п	Тематика лекционных занятий / краткое содержание	
21	Исполнительные устройства САУ электропривода ПСЖД Рассматриваемые вопросы: Силовые полупроводниковые приборы (IGBT, IGCT, SiC); Приводы силовых ключей; Тяговые преобразователи (структура, управление); Системы охлаждения.	
22	Моделирование САУ электропривода ПСЖД Рассматриваемые вопросы: Цели и задачи моделирования; Инструменты моделирования (Matlab/Simulink, PLECS); Построение моделей тягового привода и САУ; Анализ устойчивости и качества переходных процессов.	
23	Устойчивость систем автоматического управления электроприводом ПСЖД Рассматриваемые вопросы: Понятие устойчивости; Критерии устойчивости (Гурвица, Найквиста, Михайлова); Анализ устойчивости типовых структур САУ электропривода; Пути обеспечения устойчивости.	
24	Качество процессов управления в САУ электропривода ПСЖД Рассматриваемые вопросы: Показатели качества (быстродействие, перерегулирование, статическая ошибка); Влияние параметров САУ на качество; Методы оценки качества (по переходной характеристике, частотным характеристикам); Оптимизация качества управления.	
25	Автоматическое управление рекуперативным торможением Рассматриваемые вопросы: Условия эффективной рекуперации; Стабилизация напряжения в контактной сети при рекуперации; Управление моментом торможения при изменяющемся напряжении сети; Обеспечение плавности торможения.	
26	Системы управления тяговым приводом высокоскоростного подвижного состава Рассматриваемые вопросы: Особенности динамики высокоскоростного движения; Требования к точности и быстродействию САУ; Управление мощностью и силой тяги; Проблемы токосъема и электромагнитной совместимости.	
27	Системы управления приводами вспомогательных машин ПСЖД Рассматриваемые вопросы: Типы вспомогательных приводов (компрессоры, вентиляторы, насосы); Задачи управления (поддержание давления, температуры, расхода); Методы управления (частотное регулирование); Энергосбережение.	
28	Системы диагностики и технического обслуживания САУ электропривода ПСЖД Рассматриваемые вопросы: Методы встроенного контроля (ВІТЕ); Диагностика неисправностей элементов САУ; Прогнозирование остаточного ресурса; Системы сбора и анализа диагностических данных.	
29	Электромагнитная совместимость (ЭМС) САУ электропривода ПСЖД Рассматриваемые вопросы: Источники электромагнитных помех в тяговом приводе; Методы подавления помех (фильтры, экранирование, заземление); Нормы и стандарты по ЭМС для ПСЖД; Влияние ЭМС на работу датчиков и систем управления.	
30	Системы автоматического управления тяговым приводом в особых условиях Рассматриваемые вопросы: Управление при пониженном сцеплении (гололед, дождь); Управление в горных условиях (длительные спуски/подъемы); Особенности управления в метро и на монорельсовых дорогах; Управление при аварийных ситуациях.	
31	Тенденции развития САУ электропривода ПСЖД Рассматриваемые вопросы: Применение широкозонных полупроводников (SiC, GaN); Развитие методов предиктивного и оптимального управления; Использование искусственного интеллекта и машинного обучения; Повышение уровня интеграции и миниатюризации систем управления.	
32	Интеграция САУ тягового привода с общевагонными системами управления Рассматриваемые вопросы: Взаимодействие с системой управления поездом (PIS, TMS); Обмен данными с системами безопасности (СКНБ, ЕКС); Участие в системе бортовой диагностики; Управление энергопотреблением всего поезда.	

4.2. Занятия семинарского типа.

Лабораторные работы

№ п/п	Наименование лабораторных работ / краткое содержание		
1	Снятие статических и динамических характеристик ТЭД постоянного тока		
В результате выполнения лабораторной работы студенты экспериментально снимут и			
	проанализируют механические, электромеханические и переходные характеристики ТЭД при		
	различных схемах питания и управления, определят основные параметры двигателя.		
2	Исследование работы контура тока якоря ТЭД постоянного тока		
	В результате выполнения лабораторной работы студенты экспериментально исследуют переходные		
	процессы в контуре тока (разгон, торможение, наброс нагрузки), оценят влияние параметров ПИ-		
	регулятора тока на быстродействие, перерегулирование и статическую ошибку.		
3	Исследование каскадной системы подчиненного регулирования скорости ТЭД		
	постоянного тока (контуры тока и скорости)		
	В результате выполнения лабораторной работы студенты экспериментально изучат взаимодействие		
	контуров тока и скорости, оценят влияние параметров ПИ-регулятора скорости на качество		
	переходных процессов при изменении задания скорости и возмущающего момента.		
4	Исследование системы автоматического ослабления поля (АОП) ТЭД постоянного		
	тока		
	В результате выполнения лабораторной работы студенты экспериментально определят моменты		
	срабатывания ступеней АОП, исследуют влияние АОП на скоростные характеристики и		
	энергетические показатели привода в различных режимах работы.		
5	Исследование скалярного управления (U/f) асинхронным тяговым двигателем		
	(АТД)		
	В результате выполнения лабораторной работы студенты экспериментально снимут механические		
	характеристики АТД при различных частотах, исследуют пусковые свойства, устойчивость работы		
	и ограничения метода U/f=const.		
6	Исследование векторного управления асинхронным тяговым двигателем		
	В результате выполнения лабораторной работы студенты экспериментально изучат динамические		
	характеристики АТД при векторном управлении (разгон, реверс, наброс момента), оценят точность		
	регулирования момента и скорости, сравнят с результатами скалярного управления.		
7	Исследование режимов рекуперативного торможения АТД		
	В результате выполнения лабораторной работы студенты экспериментально изучат процесс		
	перехода из двигательного режима в генераторный, исследуют стабилизацию напряжения звена		
	постоянного тока (ЗПТ) при рекуперации, оценят эффективность передачи энергии.		
8	Исследование работы системы стабилизации напряжения в звене постоянного тока		
	(ЗПТ) преобразователя		
	В результате выполнения лабораторной работы студенты экспериментально исследуют влияние		
	регулятора напряжения ЗПТ на стабильность напряжения при скачках нагрузки (пуск двигателя) и		
	при рекуперативном торможении.		
9	Исследование алгоритмов обнаружения и подавления боксования		
В результате выполнения лабораторной работы студенты экспериментально смоделирую			
	потери сцепления, исследуют работу алгоритма обнаружения боксования (по разности		
	скоростей/токов двигателей) и эффективность различных методов его подавления (снижение		
	момента, подпесок).		
10	Исследование влияния параметров ПИД-регуляторов на качество переходных		
	процессов в САУ электропривода		
	В результате выполнения лабораторной работы студенты экспериментально оценят влияние		
	изменения коэффициентов пропорциональности (Кр), интеграла (Кі) и дифференциала (Кd)		
	регуляторов тока и скорости на время регулирования, перерегулирование, колебательность и		
	статическую ошибку.		
	Samuel Common,		

№	Наименование лабораторных работ / краткое содержание		
п/п	таминование масораториям рассту пратисе содержание		
11	Исследование цифрового управления тяговым электроприводом на базе ПЛК		
	В результате выполнения лабораторной работы студенты настроят и запрограммируют простей		
	законы управления (ПИ-регулятор тока) на промышленном программируемом логическом		
10	контроллере (ПЛК), исследуют влияние периода дискретизации на качество управления.		
12	Исследование электромагнитной совместимости (ЭМС) преобразователя частоты		
	В результате выполнения лабораторной работы студенты экспериментально измерят уровни		
	кондуктивных электромагнитных помех на входе и выходе инвертора, исследуют эффективность входных и выходных фильтров для обеспечения соответствия нормам ЭМС.		
13	Исследование работы системы управления синхронным тяговым двигателем с		
	постоянными магнитами (СДПМ)		
	В результате выполнения лабораторной работы студенты экспериментально изучат характеристики		
	СДПМ при векторном управлении, исследуют особенности пуска, регулирования момента и		
	скорости, оценят эффективность в тяговом режиме.		
14 Исследование тепловых режимов работы силовых модулей (IGBT)			
	преобразователя		
	В результате выполнения лабораторной работы студенты экспериментально измерят температуры		
	кристаллов IGBT в различных режимах работы инвертора (разные токи, частоты переключения),		
	оценят эффективность системы охлаждения.		
15	Исследование бессенсорных методов определения скорости/положения ротора		
	АТД		
	В результате выполнения лабораторной работы студенты экспериментально изучат и сравнят		
	точность и диапазон работы различных бессенсорных алгоритмов (по ЭДС, по высокочастотному		
16	сигналу) при разных скоростях и нагрузках. Комплексное исследование работы САУ тягового привода на стенде,		
10			
	имитирующем движение ПСЖД В результате выполнения лабораторной работы студенты проведут комплексное тестирование С		
	электропривода, имитируя движение по заданному профилю пути (разгон, движение с постоянной		
	скоростью, преодоление уклона, торможение), оценят энергоэффективность, плавность хода и		
	выполнение заданных режимов.		

Практические занятия

№ п/п	Тематика практических занятий/краткое содержание	
1	Расчет статических характеристик электропривода постоянного тока	
	В результате выполнения практического задания студенты рассчитают и построят естественные и искусственные механические и электромеханические характеристики ТЭД постоянного тока для различных схем питания и значений сопротивлений в цепи якоря и возбуждения.	
2	Расчет параметров силового преобразователя для ТЭД постоянного тока В результате выполнения практического задания студенты определят необходимые параметры (напряжение, ток, мощность) управляемого выпрямителя или импульсного преобразователя для питания ТЭД постоянного тока заданной мощности с учетом пусковых токов и требований к регулированию.	
3	Расчет параметров ПИ-регулятора тока якоря ТЭД постоянного тока В результате выполнения практического задания студенты рассчитают коэффициенты усиления и постоянные времени ПИ-регулятора для контура тока якоря на основе заданных требований к быстродействию и перерегулированию.	
4	Расчет параметров ПИ-регулятора скорости в системе подчиненного регулирования (ТЭД ПТ) В результате выполнения практического задания студенты рассчитают параметры ПИ-регулято	

No			
п/п	Тематика практических занятий/краткое содержание		
	скорости для каскадной системы управления ТЭД постоянного тока, обеспечивающей требуемое качество переходного процесса при разгоне и торможении.		
5	Расчет параметров системы автоматического ослабления поля (АОП) ТЭД		
	постоянного тока		
	В результате выполнения практического задания студенты определят моменты (токи, скорос		
	переключения ступеней ослабления поля, рассчитают добавочные сопротивления в цепи		
возбуждения или коэффициенты ослабления для заданного диапазона регулирования			
6	Расчет энергетических показателей электропривода постоянного тока при пуске и		
	торможении		
	В результате выполнения практического задания студенты рассчитают потери энергии в якоре,		
	возбуждении и реостатах, а также оценим КПД привода и величину рекуперируемой энергии (при		
	наличии) для заданного цикла работы локомотива.		
7	Расчет статических характеристик асинхронного тягового привода при скалярном		
	управлении (U/f=const)		
	В результате выполнения практического задания студенты рассчитают и построят механические		
	характеристики АТД для различных частот питающего напряжения, определят зоны устойчивой		
	работы и критический момент.		
8	Расчет параметров преобразователя частоты для скалярного управления АТД		
	В результате выполнения практического задания студенты определят требуемые выходные		
	параметры инвертора (диапазон частот, напряжение, ток) и рассчитают закон изменения напряжения в функции частоты (U/f) для заданного АТД с учетом ограничений.		
9	Расчет параметров регуляторов тока статора для векторного управления АТД		
	В результате выполнения практического задания студенты рассчитают параметры ПИ-регуляторов		
	тока в осях d и q для контуров подчиненного регулирования в системе векторного управления АТД.		
10 Расчет параметров регулятора скорости и потокосцепления ротора в вектор			
	управлении АТД		
	В результате выполнения практического задания студенты рассчитают параметры ПИ-регулятора		
	скорости и регулятора потокосцепления ротора для системы векторного управления с ориентацией		
	по полю ротора.		
11	Расчет момента и тока статора при векторном управлении АТД		
	В результате выполнения практического задания студенты рассчитают задающие сигналы по току в		
	осях d и q для обеспечения требуемого момента и поддержания номинального потокосцепления		
12	ротора при различных скоростях вращения.		
12	Расчет параметров системы управления моментом синхронного тягового двигателя		
	(СДПМ)		
	В результате выполнения практического задания студенты рассчитают параметры регуляторов тока и моментообразующей составляющей тока статора (Iq) для СДПМ с учетом его параметров		
	(индуктивности, потока постоянных магнитов).		
13	Расчет переходных процессов в контуре тока при пуске ЭПС		
	В результате выполнения практического задания студенты рассчитают и построят графики		
изменения тока якоря (или статора) и скорости при пуске с ограничением тока для з			
	параметров двигателя, момента инерции и момента нагрузки.		
14	Расчет параметров системы рекуперативного торможения (стабилизация		
	напряжения звена постоянного тока)		
	В результате выполнения практического задания студенты рассчитают параметры регулятора		
	напряжения в звене постоянного тока (ЗПТ) инвертора, обеспечивающего стабильное напряжение		
	при рекуперации энергии в контактную сеть с заданными динамическими характеристиками.		

No			
п/п	Тематика практических занятий/краткое содержание		
15	Расчет тормозных характеристик и энергии рекуперации В результате выполнения практического задания студенты рассчитают зависимость тормозного момента (силы) от скорости при рекуперативном торможении, определит максимальную рекуперируемую мощность и энергию для заданного профиля пути.		
16	Расчет параметров системы обнаружения и подавления боксования В результате выполнения практического задания студенты рассчитают пороговые значения ускорения оси или разности токов двигателей, при которых срабатывает алгоритм подавления боксования, и определят параметры воздействия (снижение момента) для типовых условий		
17	сцепления. Расчет статической ошибки регулирования скорости		
17	В результате выполнения практического задания студенты рассчитают статическую ошибку поддержания скорости движения ЭПС при действии возмущающего момента (уклон) для системы с П- и ПИ-регуляторами скорости.		
18	Расчет коэффициента демпфирования механических колебаний в приводе В результате выполнения практического задания студенты рассчитают параметры упруго-массовой модели привода (колесная пара-редуктор-двигатель) и оценят влияние коэффициентов регуляторов тока и скорости на демпфирование возможных колебаний.		
19	Расчет оптимального закона управления разгоном ЭПС В результате выполнения практического задания студенты рассчитают закон изменения ускорения (или момента) во времени при разгоне, минимизирующий потери энергии или время разгона при заданных ограничениях (ток, ускорение, скорость).		
20	Расчет параметров входного LC-фильтра преобразователя В результате выполнения практического задания студенты рассчитают индуктивность и емкость входного фильтра тягового преобразователя для обеспечения требуемого уровня пульсаций тока, потребляемого из контактной сети, и соответствия нормам ЭМС.		
21	Расчет теплового режима силовых полупроводниковых приборов (IGBT) В результате выполнения практического задания студенты рассчитают средние и действующие токи через силовые ключи, потери мощности на проводящем IGBT и диоде, а также на переключениях для заданного режима работы инвертора и определят требования к системе охлаждения.		
22	Расчет коэффициента полезного действия (КПД) тягового электропривода В результате выполнения практического задания студенты рассчитают КПД всего тягового привода (преобразователь + двигатель) для различных точек рабочей характеристики (скорость, момент) на основе заданных КПД составляющих и потерь.		
23	Расчет требуемой тактовой частоты и разрядности ЦАП/АЦП для цифровой САУ В результате выполнения практического задания студенты определят минимально необходимую тактовую частоту микроконтроллера и разрядность ЦАП/АЦП для реализации заданных законов регулирования (ПИД) с требуемым быстродействием и точностью.		
24	Синтез и анализ простейшей САУ тягового привода в среде моделирования В результате выполнения практического задания студенты создадут упрощенную модель САУ тягового привода (напр., контур тока ТЭД ПТ), рассчитают и введут параметры регуляторов, промоделируют переходные процессы (пуск, наброс нагрузки) и оценят качество регулирования (время, перерегулирование, ошибка).		

4.3. Самостоятельная работа обучающихся.

	№ π/π	Вид самостоятельной работы
ſ	1	Текущая подготовка к лабораторным и практическим занятиям.

№ п/п	Вид самостоятельной работы	
2	Изучение дополнительной литературы.	
3	Выполнение курсовой работы. Подготовка к промежуточной аттестации.	
4		
5	Подготовка к текущему контролю.	

4.4. Примерный перечень тем курсовых работ

- 1. Разработка системы подчиненного регулирования для ТЭД постоянного тока
- 2. Векторное управление асинхронным тяговым приводом с ориентацией по полю ротора
- 3. Оптимизация пуска электроподвижного состава с ограничением тока и ускорения
- 4. Система рекуперативного торможения с стабилизацией напряжения в ЗПТ
- 5. Адаптивная система управления тяговым приводом при изменяющемся сцеплении колеса с рельсом
- 6. Цифровая реализация ПИД-регулятора скорости на базе микроконтроллера
- 7. Управление синхронным двигателем с постоянными магнитами (СДПМ) для высокоскоростного подвижного состава
 - 8. Система автоматического ослабления поля для ТЭД постоянного тока
 - 9. Диагностика и прогнозирование отказов в САУ электропривода
 - 10. Интеграция САУ тягового привода с системами управления поездом

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Замуруев, С. Н. Системы автоматического управления: Практикум: учебное пособие / С. Н. Замуруев, Е. А. Чистяков, А. П. Клопова. — Москва: РТУ МИРЭА, 2025. — 114 с. — ISBN 978-5-7339-2459-5.	URL: https://e.lanbook.com/book/493412 (дата обращения: 12.07.2025) Текст: электронный.
2	Шамшина, И. Г. Теория автоматического управления. Линейные непрерывные системы : учебное пособие / И. Г. Шамшина. — Находка : Дальрыбвтуз, 2022. — 144 с. — ISBN 978-5-88871-760-8.	URL: https://e.lanbook.com/book/307436 (дата обращения: 12.07.2025) Текст: электронный.

3	Ощепков, А. Ю. Системы автоматического	URL:
	управления: теория, применение, моделирование в	https://e.lanbook.com/book/341180
	МАТLАВ / А. Ю. Ощепков. — 5-е изд., стер. —	(дата обращения: 12.07.2025)
	Санкт-Петербург: Лань, 2023. — 208 с. — ISBN	Текст: электронный.
	978-5-507-47207-9.	
4	Евстафьев, А. М. Определение параметров и	URL:
	качества регулирования системы автоматического	https://e.lanbook.com/book/111717
	управления тяговыми электродвигателями	(дата обращения: 12.07.2025)
	электровозов переменного тока: учебное пособие	Текст: электронный.
	/ А. М. Евстафьев, А. Я. Якушев. — Санкт-	
	Петербург : ПГУПС, 2017. — 44 с. — ISBN 978-5-	
	7641-1100-1.	
5	Бирюков, В. В. Автоматизированный тяговый	URL:
	электропривод : учебник / В. В. Бирюков. —	https://e.lanbook.com/book/152145
	Новосибирск : НГТУ, 2019. — 323 с. — ISBN 978-	(дата обращения: 12.07.2025)
	5-7782-3993-7.	Текст: электронный.

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (https://www.miit.ru/);

Научно-техническая библиотека РУТ (МИИТ) (http:/library.miit.ru);

Образовательная платформа «Юрайт» (https://urait.ru/);

Общие информационные, справочные и поисковые системы «Консультант Плюс» (http://www.consultant.ru/), «Гарант» (http://www.garant.ru/);

«Техэксперт» — справочная система, предоставляющая нормативнотехническую, нормативно-правовую информацию (https://docs.cntd.ru/);

Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/);

Электронно-библиотечная система ibooks.ru (http://ibooks.ru/); Главная книга (https://glavkniga.ru/).

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Microsoft Office (Word, Excel); MatLab Simulink; SimInTech; Codesys.

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебные аудитории для проведения учебных занятий, оснащенные компьютерной техникой, наборами демонстрационного оборудования и стендами для выполнения лабораторных работ.

9. Форма промежуточной аттестации:

Курсовая работа в 6 семестре. Зачет в 6, 7 семестрах.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

старший преподаватель кафедры «Электропоезда и локомотивы»

Д.В. Назаров

Согласовано:

Заведующий кафедрой НТТС

П.А. Григорьев

Заведующий кафедрой ЭиЛ

О.Е. Пудовиков

Председатель учебно-методической

комиссии

С.В. Володин