МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 01.03.02 Прикладная математика и информатика, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Системы искусственного интеллекта и машинное обучение

Направление подготовки: 01.03.02 Прикладная математика и

информатика

Направленность (профиль): Математическое моделирование и системный

анализ

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5665

Подписал: заведующий кафедрой Нутович Вероника

Евгеньевна

Дата: 01.09.2024

1. Общие сведения о дисциплине (модуле).

Целью освоения дисциплины (модуля) является:

- обеспечение студентов прочными знаниями в области нейронных сетей, формирование основ математической подготовки студентов, необходимых для профессиональной деятельности бакалавров.

Задачами освоения дисциплины (модуля) являются:

- формирование личности студента, развитие его интеллекта и умения логически и алгоритмически мыслить, формирование умений и навыков, необходимых при практическом применении теории комплексного анализа;
- использовать в своей деятельности современные нейросетевые методы и модели.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-2** Способен использовать и адаптировать существующие математические методы и системы программирования для разработки и реализации алгоритмов решения прикладных задач;
- **ОПК-4** Способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- анализировать и сравнивать имеющиеся методы и средства решения прикладных задач;
- владеть понятиями и фактами из области математических, а также других естественно-научных дисциплин.

Уметь:

- формулировать постановку задачи и излагать ее;
- применять на практике изученные методы и подходы.

Владеть:

- классификацией и выделением существенных подзадач при анализе данных;
 - навыками сбора и обработки данных;
 - навыками применения методов машинного обучения для предсказания

значений целевой переменной.

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 5 з.е. (180 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

		Количество часов		
Тип учебных занятий	Всего	Семестр		
		№4	№5	
Контактная работа при проведении учебных занятий (всего):			64	
В том числе:				
Занятия лекционного типа	48	16	32	
Занятия семинарского типа	48	16	32	

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 84 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

№ п/п	Тематика лекционных занятий / краткое содержание		
1	Основные понятия нейронных сетей		
	Рассматриваемые вопросы:		

No	
	Тематика лекционных занятий / краткое содержание
п/п	
	- история развития;
	- вычисление градиента;
	- метод обратного распространения ошибки;
	- функции активации; - введение в Pytorch;
	- введение в г уюгсп, - основные методы оптимизации в нейросетях.
2	-
2	Инструменты регуляризации в нейронных сетях
	Рассматриваемые вопросы:
	- batch normalization;
	- dropout;
	- аугментация данных.
3	Автоэнкодеры
	Рассматриваемые вопросы:
	- снижение размерности и построение информативных представлений данных;
	- построение информативных представлений слов;
	- word2vec; - GloVe.
1	
4	Введение в рекуррентные нейронные сети
	Рассматриваемые вопросы:
	- принцип работы;
	- процесс обучения;
	- проблема затухающих и взрывающихся градиентов;
	- регуляризация и нормализация.
5	Основные архитектуры в рекуррентных нейронных сетях
	Рассматриваемые вопросы:
	- простые рекуррентные сети – Simple RNN;
	- долгосрочная краткосрочная память - LSTM; - GRU.
-	
6	Применение рекуррентных нейронных сетей в задачах
	Рассматриваемые вопросы:
	- обработка естественного языка;
	- генерация текста;
7	- моделирование временных рядов.
'	Введение в компьютерное зрение
	Рассматриваемые вопросы:
	- сверточные нейронные сети;
	- классификация изображений; - использование предобученных моделей в качестве backbone;
	- использование предооученных моделеи в качестве баскоопе; - контрастное обучение;
	- контрастное обучение, - распознование лиц с помощью сиамских нейросетей.
8	Оценка близости текстов и механизм внимания
0	
	Рассматриваемые вопросы: - DSSM – оценка близости текстов;
	- DSSM – оценка олизости текстов; - Attention – механизм внимания.
9	
9	Языковые модели
	Рассматриваемые вопросы:
10	- BERT в задачах классификации.
10	Глубокое обучение с подкреплением
	Рассматриваемые вопросы:
	- история развития и основные концепции;

№ п/п	Тематика лекционных занятий / краткое содержание				
11/11	 принцип работы агент-среда; 				
	- основные компоненты обучения с подкреплением: среда, агент, действия, вознагрождение,				
	стратегия;				
	- обзор основных алгоритмов;				
	- примеры приложений обучения с подкреплением в играх, робототехнике и других областях.				
11	Основные алгоритмы обучения с подкреплением				
	Рассматриваемые вопросы:				
	- Q-learning: принцип работы, обновление функции Q-значения, примеры применения;				
	- Deep Q-Networks: использование нейронных сетей для оценки Q-значения, принцип работы,				
	примеры применения;				
	- Policy Gradient Methods: принцип работы, примеры применения;				
	- сравнение и анализ алгоритмов.				
12	Задача "многоруких бандитов"				
	Рассматриваемые вопросы:				
	- постановка задачи;				
	- модели многорукого бандита: случайный, жадный, в условиях неопределенности;				
	- алгоритмы выбора действий: эпсилон жадная стратегия, сэмплирование Томпсона, Upper Confidence				
	Bound;				
	- применение в реальных задачах.				

4.2. Занятия семинарского типа.

Лабораторные работы

№	Наумоморомно набораторум и работ / протисо со наругами	
Π/Π	Наименование лабораторных работ / краткое содержание	
1	Основные понятия нейронных сетей	
	В результате выполнения лабораторной работы студент получает навыки построения простой	
	нейронной сети и понимание архитектуры и структуры нейронных сетей.	
2	Инструменты регуляризации в нейронных сетях	
	В результате выполнения лабораторной работы студент получает навыки применения различных	
	методов регуляризации и оценки их эффективности.	
3	Автоэнкодеры	
	В результате выполнения лабораторной работы студент получает навыки построения информативных	
	представлений слов.	
4	Введение в рекуррентные нейронные сети	
	В результате выполнения лабораторной работы студент получает навыки для понимания основных	
	принципов работы реккурентных нейронных сетей.	
5	Основные архитектуры в рекуррентных нейронных сетях	
	В результате выполнения лабораторной работы студент получает навыки работы с основными	
	архитектурами реккурентных нейроных сетей.	
6	Применение рекуррентных нейронных сетей в задачах	
	В результате выполнения лабораторной работы студент получает навыки использования RNN для	
	обработки естественного языка, включая моделирование последовательностей и генерацию текста, а	
	также применения RNN в задачах анализа временных рядов.	
7	Введение в компьютерное зрение	
	В результате выполнения лабораторной работы студент получает навыки работы со сверточными	
	сетями и классификации изображений.	
8	Оценка близости текстов и механизм внимания	

№ п/п	Наименование лабораторных работ / краткое содержание
	В результате выполнения лабораторной работы студент получает навыки понимания основных
	подходов к измерению сходства между текстовыми документами.
9	Языковые модели
	В результате выполнения лабораторной работы студент получает навыки работы архитектуры языковой модели BERT.
10	Глубокое обучение с подкреплением
	В результате выполнения лабораторной работы студент получает навыки для понимания основных
	концепций и принципов работы глубокого обучения с подкреплением.
11	Основные алгоритмы обучения с подкреплением
	В результате выполнения лабораторной работы студент получает навыки работы с основными
	алгоритмами обучения с подкреплением: Q-learning, Deep Q-Networks, Policy Gradient Methods.
12	Задача "многоруких бандитов"
	В результате выполнения лабораторной работы студент получает навыки реализации и применения алгоритма "многоруких бандитов" в моделировании и тестировании стратегий.

4.3. Самостоятельная работа обучающихся.

No	Вид самостоятельной работы
п/п	Вид самостоятельной расоты
1	Самостоятельное изучение лекционного материала.
2	Изучение учебной литературы из приведённых источников.
3	Подготовка к лабораторным занятиям.
4	Выполнение курсовой работы.
5	Подготовка к промежуточной аттестации.
6	Подготовка к текущему контролю.

4.4. Примерный перечень тем курсовых работ

4 семестр

- 1. Предсказание временных рядов с использованием полносвязных нейронных сетей.
- 2. Реализация архитектуры нейронной сети ResNet с использованием полносвязных слоев.
- 3. Разработка алгоритма обучения генеративной модели с использованием автоэнкодеров.
- 4. Анализ влияния размера скрытого слоя на эффективность автоэнкодеров в задачах сжатия данных.
- 5. Применение рекуррентных нейронных сетей для анализа текстовых данных: классификация текстов с использованием LSTM и GRU.

- 6. Исследование влияния функции активации на производительность рекуррентных нейронных сетей в задачах обработки естественного языка.
- 7. Создание алгоритма генерации музыки с использованием рекуррентных нейронных сетей: моделирование последовательностей нот и аккордов с помощью LSTM или GRU.
- 8. Разработка нейронной сети для реконструкции изображений на основе автоэнкодеров: восстановление изображений после искажения с использованием глубоких автоэнкодеров.
- 9. Анализ эффективности применения автоэнкодеров для уменьшения размерности данных в задачах классификации изображений.
- 10. Создание алгоритма генерации текстовых описаний для изображений с использованием объединенной архитектуры автоэнкодеров и рекуррентных нейронных сетей.

5 семестр

- 1. Применение сверточных нейронных сетей для задачи распознавания объектов в изображениях: сравнительный анализ различных архитектур сверточных нейронных сетей.
- 2. Использование трансформерных моделей для оценки близости текстовых запросов: разработка и сравнительный анализ моделей механизма внимания для задач ранжирования текстов
- 3. Разработка и обучение генеративной модели на основе архитектуры BERT для генерации текстовых описаний изображений: сравнение существующих подходов и анализ результатов.
- 4. Применение методов обучения с подкреплением для создания алгоритма автоматической игры в видеоигры: анализ эффективности различных стратегий и подходов.
- 5. Исследование эффективности алгоритмов многорукого бандита в контексте интернет-рекламы: разработка и тестирование алгоритмов выбора объявлений для оптимизации кликов и конверсий.
- 6. Применение методов компьютерного зрения для анализа медицинских изображений: разработка системы автоматического диагностирования на основе сверточных нейронных сетей.
- 7. Создание модели оценки сходства текстов на основе BERT для поиска дубликатов и анализа плагиата в текстовых данных: разработка и тестирование алгоритма с использованием наборов данных.
 - 8. Исследование применения механизма внимания в нейронных сетях

для задачи автоматической обработки естественного языка: разработка и сравнительный анализ различных архитектур.

- 9. Создание алгоритма обучения с подкреплением для автоматического управления роботом в среде симуляции: анализ эффективности и обучаемости различных стратегий управления.
- 10. Применение архитектуры глубоких сверточных нейронных сетей для обнаружения и классификации дефектов на промышленных изображениях: разработка и тестирование модели на реальных данных с целью повышения эффективности производственного контроля.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

$N_{\underline{0}}$			
л <u>е</u> п/	Библиографическо	Маста доступа	
	е описание	Место доступа	
П	D 01	https://plib.gogle/deed.legging.fog.goggnoytegging.goggnoytegging.	
1	R. Shanmugamani.	https://zlib.pub/book/deep-learning-for-computer-vision-expert-techniques-to-train-advanced-neural-networks-using-tensorflow-and-	
	Deep Learning for	keras-627oh6tduol0	
	Computer Vision –	Relas-02/Offolduofo	
	Pact Publishing		
	Ltd., 2018 – 306 c.		
2	M.T. Hagan, H.B.	https://www.academia.edu/38646125/Neural_Network_Design_2nd_Editi	
	Demuth. Neural	on	
	Network Design –		
	Martin Hagan, 2014		
	– 1012 c.		
3	R. Rojas. Neural	https://drive.google.com/file/d/0B0UkQ6gHvW-	
	Networks: A	Tam03cUFiTm43bjQ/view?resourcekey=0-	
	Systematic	wXElDYpsXcrQMmndc1oT6Q	
	Introduction –		
	Berlin: Springer-		
	Verlag, 1996 – 509		
	c. ISBN 978-3-642-		
	61068-4		
4	Саттон Р.С., Барто	https://obuchalka.org/2017091096341/obuchenie-s-podkrepleniem-satton-	
	Э.Г. Обучение с	r-s-barto-e-g-2014.html	
	подкреплением –		
	Москва:		
	Издательство		
	Бином.		
	Лаборатория		
	знаний, 2014 – 402		
	c.		

- 6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).
 - Научно-техническая библиотека РУТ (МИИТ) (http://library.miit.ru);
- Информационный портал Научная электронная библиотека eLIBRARY.RU (www.elibrary.ru);
 - Образовательная платформа «Юрайт» (https://urait.ru/);
- Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/);
 - Электронно-библиотечная система ibooks.ru (http://ibooks.ru/).
- Интернет-университет информационных технологий (http://www.intuit.ru/).
- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).
 - Операционная система Windows;
 - Microsoft Office;
 - MS Teams;
 - Поисковые системы.
- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Для проведения занятий лекционного типа требуются аудитории, оснащенные компьютерной техникой и наборами демонстрационного оборудования.

Для лабораторных занятий – наличие персональных компьютеров.

9. Форма промежуточной аттестации:

Зачет в 4, 5 семестрах.

Курсовая работа в 4, 5 семестрах.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

Д.В. Сошников

Согласовано:

Заведующий кафедрой ЦТУТП

В.Е. Нутович

Председатель учебно-методической

комиссии Н.А. Андриянова