МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 01.03.02 Прикладная математика и информатика, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Системы искусственного интеллекта и машинное обучение

Направление подготовки: 01.03.02 Прикладная математика и

информатика

Направленность (профиль): Математическое моделирование и системный

анализ

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5665

Подписал: заведующий кафедрой Нутович Вероника

Евгеньевна

Дата: 10.04.2025

1. Общие сведения о дисциплине (модуле).

Целью освоения дисциплины (модуля) является:

- обеспечение студентов прочными знаниями в области нейронных сетей, формирование основ математической подготовки студентов, необходимых для профессиональной деятельности бакалавров.

Задачами освоения дисциплины (модуля) являются:

- формирование личности студента, развитие его интеллекта и умения логически и алгоритмически мыслить, формирование умений и навыков, необходимых при практическом применении теории комплексного анализа;
- использовать в своей деятельности современные нейросетевые методы и модели.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-2** Способен использовать и адаптировать существующие математические методы и системы программирования для разработки и реализации алгоритмов решения прикладных задач;
- **ОПК-4** Способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- анализировать и сравнивать имеющиеся методы и средства решения прикладных задач;
- владеть понятиями и фактами из области математических, а также других естественно-научных дисциплин.

Уметь:

- формулировать постановку задачи и излагать ее;
- применять на практике изученные методы и подходы.

Владеть:

- классификацией и выделением существенных подзадач при анализе данных;
 - навыками сбора и обработки данных;

- навыками применения методов машинного обучения для предсказания значений целевой переменной.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 5 з.е. (180 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов		
	Всего	Сем	Семестр
		№5	№6
Контактная работа при проведении учебных занятий (всего):	96	48	48
В том числе:			
Занятия лекционного типа	32	16	16
Занятия семинарского типа	64	32	32

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 84 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

No		
п/п	Тематика лекционных занятий / краткое содержание	
1	Основные понятия нейронных сетей	
1	<u>-</u>	
Рассматриваемые вопросы: - история развития;		
	- вычисление градиента;	
	- метод обратного распространения ошибки;	
	- функции активации;	
	- введение в Pytorch;	
	- основные методы оптимизации в нейросетях.	
2	Инструменты регуляризации в нейронных сетях	
	Рассматриваемые вопросы:	
	- batch normalization;	
	- dropout;	
	- аугментация данных.	
3	Автоэнкодеры	
	Рассматриваемые вопросы:	
	- снижение размерности и построение информативных представлений данных;	
	- построение информативных представлений слов;	
	- word2vec;	
	- GloVe.	
4	Введение в рекуррентные нейронные сети	
	Рассматриваемые вопросы:	
	- принцип работы;	
	- процесс обучения;	
	- проблема затухающих и взрывающихся градиентов;	
	- регуляризация и нормализация.	
5 Основные архитектуры в рекуррентных нейронных сетях		
	Рассматриваемые вопросы:	
- простые рекуррентные сети – Simple RNN;		
- долгосрочная краткосрочная память - LSTM; - GRU.		
6		
Ü	Применение рекуррентных нейронных сетей в задачах	
	Рассматриваемые вопросы: - обработка естественного языка;	
	- генерация текста;	
	- моделирование временных рядов.	
7	Введение в компьютерное зрение	
,	Рассматриваемые вопросы:	
	- сверточные нейронные сети;	
	- классификация изображений;	
	- использование предобученных моделей в качестве backbone;	
	- контрастное обучение;	
	- распознование лиц с помощью сиамских нейросетей.	
8	Оценка близости текстов и механизм внимания	
	Рассматриваемые вопросы:	
- DSSM – оценка близости текстов;		
	- Attention – механизм внимания.	
9	Языковые модели	
	Рассматриваемые вопросы:	
	- BERT в задачах классификации.	

No	T		
п/п	Тематика лекционных занятий / краткое содержание		
10	Глубокое обучение с подкреплением		
	Рассматриваемые вопросы:		
	- история развития и основные концепции;		
	- принцип работы агент-среда;		
	- основные компоненты обучения с подкреплением: среда, агент, действия, вознагрождение,		
	стратегия;		
	- обзор основных алгоритмов;		
	- примеры приложений обучения с подкреплением в играх, робототехнике и других областях.		
11	Основные алгоритмы обучения с подкреплением		
	Рассматриваемые вопросы:		
	- Q-learning: принцип работы, обновление функции Q-значения, примеры применения;		
	- Deep Q-Networks: использование нейронных сетей для оценки Q-значения, принцип работы,		
	примеры применения;		
	- Policy Gradient Methods: принцип работы, примеры применения;		
	- сравнение и анализ алгоритмов.		
12	Задача "многоруких бандитов"		
	Рассматриваемые вопросы:		
	- постановка задачи;		
	- модели многорукого бандита: случайный, жадный, в условиях неопределенности;		
	- алгоритмы выбора действий: эпсилон жадная стратегия, сэмплирование Томпсона, Upper		
	Confidence Bound;		
	- применение в реальных задачах.		

4.2. Занятия семинарского типа.

Лабораторные работы

	1 1 1		
$N_{\underline{0}}$	Наименование лабораторных работ / краткое содержание		
п/п	паименование лаоораторных раоот / краткое содержание		
1	Основные понятия нейронных сетей		
	В результате выполнения лабораторной работы студент получает навыки построения простой		
	нейронной сети и понимание архитектуры и структуры нейронных сетей.		
2	Инструменты регуляризации в нейронных сетях		
	В результате выполнения лабораторной работы студент получает навыки применения различных		
	методов регуляризации и оценки их эффективности.		
3	Автоэнкодеры		
	В результате выполнения лабораторной работы студент получает навыки построения		
	информативных представлений слов.		
4	Введение в рекуррентные нейронные сети		
	В результате выполнения лабораторной работы студент получает навыки для понимания основных		
	принципов работы реккурентных нейронных сетей.		
5	Основные архитектуры в рекуррентных нейронных сетях		
	В результате выполнения лабораторной работы студент получает навыки работы с основными		
	архитектурами реккурентных нейроных сетей.		
6	Применение рекуррентных нейронных сетей в задачах		
	В результате выполнения лабораторной работы студент получает навыки использования RNN для		
	обработки естественного языка, включая моделирование последовательностей и генерацию текста,		
	а также применения RNN в задачах анализа временных рядов.		

№	Наименование лабораторных работ / краткое содержание		
п/п	Timinotic Summer Summer Property Reputation Conference		
7	Введение в компьютерное зрение		
	В результате выполнения лабораторной работы студент получает навыки работы со сверточными		
	сетями и классификации изображений.		
8	Оценка близости текстов и механизм внимания		
	В результате выполнения лабораторной работы студент получает навыки понимания основных		
	подходов к измерению сходства между текстовыми документами.		
9	Языковые модели		
	В результате выполнения лабораторной работы студент получает навыки работы архитектуры		
	языковой модели BERT.		
10	Глубокое обучение с подкреплением		
	В результате выполнения лабораторной работы студент получает навыки для понимания основных		
	концепций и принципов работы глубокого обучения с подкреплением.		
11	Основные алгоритмы обучения с подкреплением		
	В результате выполнения лабораторной работы студент получает навыки работы с основными		
	алгоритмами обучения с подкреплением: Q-learning, Deep Q-Networks, Policy Gradient Methods.		
12	Задача "многоруких бандитов"		
	В результате выполнения лабораторной работы студент получает навыки реализации и применения		
	алгоритма "многоруких бандитов" в моделировании и тестировании стратегий.		

4.3. Самостоятельная работа обучающихся.

No	Вид самостоятельной работы	
Π/Π		
1	Самостоятельное изучение лекционного материала.	
2	Изучение учебной литературы из приведённых источников.	
3	Подготовка к лабораторным занятиям.	
4	Выполнение курсового проекта.	
5	Подготовка к промежуточной аттестации.	
6	Подготовка к текущему контролю.	

4.4. Примерный перечень тем курсовых проектов 6 семестр

- 1. Предсказание временных рядов с использованием полносвязных нейронных сетей.
- 2. Реализация архитектуры нейронной сети ResNet с использованием полносвязных слоев.
- 3. Разработка алгоритма обучения генеративной модели с использованием автоэнкодеров.
- 4. Анализ влияния размера скрытого слоя на эффективность автоэнкодеров в задачах сжатия данных.

- 5. Применение рекуррентных нейронных сетей для анализа текстовых данных: классификация текстов с использованием LSTM и GRU.
- 6. Исследование влияния функции активации на производительность рекуррентных нейронных сетей в задачах обработки естественного языка.
- 7. Создание алгоритма генерации музыки с использованием рекуррентных нейронных сетей: моделирование последовательностей нот и аккордов с помощью LSTM или GRU.
- 8. Разработка нейронной сети для реконструкции изображений на основе автоэнкодеров: восстановление изображений после искажения с использованием глубоких автоэнкодеров.
- 9. Анализ эффективности применения автоэнкодеров для уменьшения размерности данных в задачах классификации изображений.
- 10. Создание алгоритма генерации текстовых описаний для изображений с использованием объединенной архитектуры автоэнкодеров и рекуррентных нейронных сетей.

5 семестр

- 1. Применение сверточных нейронных сетей для задачи распознавания объектов в изображениях: сравнительный анализ различных архитектур сверточных нейронных сетей.
- 2. Использование трансформерных моделей для оценки близости текстовых запросов: разработка и сравнительный анализ моделей механизма внимания для задач ранжирования текстов
- 3. Разработка и обучение генеративной модели на основе архитектуры BERT для генерации текстовых описаний изображений: сравнение существующих подходов и анализ результатов.
- 4. Применение методов обучения с подкреплением для создания алгоритма автоматической игры в видеоигры: анализ эффективности различных стратегий и подходов.
- 5. Исследование эффективности алгоритмов многорукого бандита в контексте интернет-рек...
- 5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Шапиро, Л. Компьютерное зрение: учебное	https://e.lanbook.com/book/417998 (дата
	пособие / Л. Шапиро, Д. Стокман ; перевод	обращения: 23.06.2025)

	с английского А. А. Богуславского под	
	редакцией С. М. Соколова. — 5-е изд. (эл.).	
	— Москва: Лаборатория знаний, 2024. —	
	763 с. — ISBN 978-5-93208-725-1. — Текст :	
	электронный // Лань : электронно-	
	электронный // Лань : электронно- библиотечная система. — URL:	
	https://e.lanbook.com/book/417998 (дата	
	обращения: 23.06.2025). — Режим доступа:	
	для авториз. пользователей.	1.44
2	«Моделирование и оптимальное	https://reader.lanbook.com/book/479615#1
	проектирование технических систем:	(дата обращения: 23.06.2025)
	учебно-методическое пособие / В. Ф.	
	Алексеев, Д. В.» (Моделирование и	
	оптимальное проектирование технических	
	систем: учебно-методическое пособие / В.	
	Ф. Алексеев, Д. В. Лихачевский, Г. А.	
	Пискун, В. В. Шаталова. — БГУИР:	
	БГУИР, 2024. — ISBN 978-985-543-720-9	
3	«Ростовцев, В. С. Искусственные	https://reader.lanbook.com/book/447392#1
	нейронные сети : учебник для вузов / В. С.	(дата обращения: 23.06.2025)
	Ростовцев. — 5-е изд., стер. — Санкт-	
	Петербург : Лань, 2025. — 216 с. — ISBN	
	978-5-507-50568-5» (Ростовцев, В. С.	
	Искусственные нейронные сети: учебник	
	для вузов / В. С. Ростовцев. — 5-е изд.,	
	стер. — Санкт-Петербург : Лань, 2025. —	
	ISBN 978-5-507-50568-5. — Текст:	
	электронный // Лань : электронно-	
	библиотечная система. — URL:	
	https://e.lanbook.com/book/447392 (дата	
	обращения: 23.06.2025). — Режим доступа:	
	для авториз. пользователей. — С. 1.).	
4	Саттон, Р. С. Обучение с подкреплением:	https://e.lanbook.com/book/179453 (дата
	введение: руководство / Р. С. Саттон, Э. Д.	обращения: 23.06.2025)
	Барто ; перевод с английского А. А.	
	Слинкина. — Москва : ДМК Пресс, 2020. —	
	552 c. — ISBN 978-5-97060-097-9	
•		

- 6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).
 - Научно-техническая библиотека РУТ (МИИТ) (http://library.miit.ru);
- Информационный портал Научная электронная библиотека eLIBRARY.RU (www.elibrary.ru);

- Образовательная платформа «Юрайт» (https://urait.ru/);
- Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/);
- Интернет-университет информационных технологий (http://www.intuit.ru/).
- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).
 - Операционная система Windows;
 - Microsoft Office;
 - MS Teams;
 - Поисковые системы.
- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Для проведения занятий лекционного типа требуются аудитории, оснащенные компьютерной техникой и наборами демонстрационного оборудования.

Для лабораторных занятий – наличие персональных компьютеров.

9. Форма промежуточной аттестации:

Зачет в 5, 6 семестрах.

Курсовой проект в 6 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

Д.В. Сошников

Согласовано:

Заведующий кафедрой ЦТУТП

В.Е. Нутович

Председатель учебно-методической

комиссии

Н.А. Андриянова