МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 01.03.02 Прикладная математика и информатика, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Системы компьютерной математики

Направление подготовки: 01.03.02 Прикладная математика и

информатика

Направленность (профиль): Математическое моделирование и системный

анализ

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5665

Подписал: заведующий кафедрой Нутович Вероника

Евгеньевна

Дата: 10.04.2025

1. Общие сведения о дисциплине (модуле).

Целью освоения дисциплины (модуля) является:

- формирование у студента компетенций в области применения вычислительных методов для решения прикладных задач, алгоритмических языков и интегрированных программных сред для реализации современных методов численного анализа.

Задачами дисциплины (модуля) являются:

- изучение классических и специальных разделов математики для разработки математической модели предметной области и изучаемого объекта;
- обучение студентов использованию пакетов прикладных программ для решегния нучно техничечких задач;
- формирование у студентов комплексного подхода к решению задачи, обеспечивающего использования всех доступных средств и технологий.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ПК-3 - Уметь разрабатывать методики выполнения аналитических работ; планировать, организовывать и контролировать аналитические работы в информационно-технологическом проекте.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- сетевые пакеты прикладных программ, используемые различными программные средами для реализации численных алгоритмов.

Уметь:

- применять сетевые пакеты прикладных программ для решения научных и инженерных задач.

Владеть:

- информацией из различных источников, включая сетевые ресурсы сети Интернет, для решения профессиональных и социальных задач.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 4 з.е. (144 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
тип учесных занятии		Семестр №6
Контактная работа при проведении учебных занятий (всего):	64	64
В том числе:		
Занятия лекционного типа	32	32
Занятия семинарского типа	32	32

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 80 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

№	Томотуме научному у рандтуй / кратура са наручачна	
Π/Π	Тематика лекционных занятий / краткое содержание	
1	Введение в систему MathCad	
	Рассматриваемые вопросы:	
	- Ввод и редактирование текста и формул	
2	Операторы и типы данных	
	Рассматриваемые вопросы:	
	- определение переменных и функций;	
	- операторы;	
	- управление вычислениями;	

$\mathcal{N}_{\underline{0}}$			
Π/Π	Тематика лекционных занятий / краткое содержание		
-			
	- типы данных; - символьные вычисления.		
	Средства программирования. Язык программирования MathCAD		
	Рассматриваемые вопросы:		
	- Операторы языка программирования MathCAD		
	Графики		
	Рассматриваемые вопросы:		
	средства построения 2-х и 3-х мерных графиков, векторных диаграмм		
	Линейная алгебра		
	Рассматриваемые вопросы:		
	способы задания матриц;		
	- спосооы задания матриц, - элементарные операции с матрицами и векторами.		
	операторы и функции для решения систем линейных уравнений и задач насобственные значения.		
	Нелинейные уравнения		
	Рассматриваемые вопросы:		
	решение нелинейных уравнений и их систем в символьном виде;		
	функция polyroots для определения корней многочленов;		
	функция гоот для решения нелинейного уравнения;		
-	блок Given – Find для решения систем уравнений.		
7 3	Задачи оптимизации		
-	блок Given – Maximize решения задачи условной оптимизации;		
- задача линейного программирования;			
	транспортная задача.		
8 (Обыкновенные дифференциальные уравнения		
P	Рассматриваемые вопросы:		
	обыкновенные дифференциальные уравнения и их системы;		
	блок Given - Odesolve для решения ОДУ;		
	функции для решения систем ОДУ, а также жестких систем.		
	Уравнения в частных производных		
	блок Given -Pdesolve для решения УЧП;		
	функции для решения УЧП различного вида;		
	функция Relax решения для задачи Дирихле.		
	Аппроксимация функций		
	Рассматриваемые вопросы:		
	интерполяция, функции для построения интерполяционных многочленов; сплайн –интерполяция;		
	сплаин – интерполяция; среднеквадратические приближения, функции для построения МНСП;		
	дискретное преобразование Фурье.		
	Геория вероятностей и математическая статистика		
	Рассматриваемые вопросы:		
	функции распределения случайных величин;		
	генераторы случайных чисел;		
	обработка статистических данных;		
	полиномиальная регрессия и регрессия специального вида		
	Оформление документов		
	Рассматриваемые вопросы:		
	ввод – вывод данных;		
	стили текста и формул;		
-	выделение и форматирование текстовых областей, работа с зонами.		

4.2. Занятия семинарского типа.

Лабораторные работы

№	Наименование лабораторных работ / краткое содержание	
Π/Π		
1	Векторные и матричные функции и опрераторы	
	В ходе выполнения лабораторной работы студент приобретает умение обрабатывать и	
	преобразовывать информацию, заданную в матричной форме.	
2	2 Решения систем линейных алгебраических уравнений	
	В результате выполнения лабораторной работы студент приобретает умения решать алгебраические	
	уравнения с использованием методов LU- и QR- разложения и СЛАУ, заданные в символьной	
2	форме.	
3	3 Построение двумерных и трехмерных графиков функций	
	В результаты выполнения лабораторной работы студент приобретает умение строить графики	
	функций одной и двух перемренных в декартовой и полярной системе координат, а также для	
4	функций, заданных в параметричической форме.	
4	Решение нелинейных уравнений	
	В результаты выполнения лабораторной работы студент приобретает умение решать нелинейные	
~	уравнения, как приближенно, так и в символьном виде	
5	Решение систем нелинейных уравнений	
	В результаты выполнения лабораторной работы студент приобретает навыки решения систем	
	нелинейных уравнений, как приближенно, так и в символьном виде.	
6	Решение задач оптимизации	
	В ходе выполнения лабораторной работы студент приобретает умение решать задачи линейного	
	прогораммирования и транспортную задачу, используя функции maximize, minimize.	
7	Дифференцирование и интегрирование	
	В результаты выполнения лабораторной работы студент приобретает умение вычислять	
	производные и интегралы, как приближенно, так и в символьном виде.	
8	Решение задачи Коши и краевой задачи для обыкновенных дифференциальных	
	уравнений (ОДУ)	
	В результате выполнения лабораторной работы студент приобретает умения решать ОДУ с	
_	помощью функции Odesolve	
9	Решение задачи Коши и краевой задачи для систем ОДУ	
	В результате выполнения лабораторной работы студент приобретает умения решать системы ОДУ с	
	помощью функций rkfixed, sbval.	
10	Решение жестких ОДУ и их систем	
	В процессе выполнения лабораторной работы студент знакомится с библиотекой прикладных	
	программ, предназначных для решения задач данного типа.	
11	Решение уравнений в частных производных	
	В результате выполнения лабораторной работы студент приобретает умения решать уравнения в	
	частных производных, используя функцию Pdesolve, занимается построением трехмерных графиков	
	функций, а также решает задачу Дирихле для эллиптического уравнения, используя функцию relax.	
12	Аппроксимация функций	
	В ходе выполнения лабораторной работы студент приобретает умение работы с	
	интерполяционными многочленами, сплайн – интерполяции, а также с многочленами наилучшего	
	среднеквадратического приближения.	
13	Дискретное преобразование Фурье	
	При выполненеии лабораторной работы студент изучает свойства ДПФ и тригонометрического	
	интерполяционного монгочлена.	

№ п/п	Наименование лабораторных работ / краткое содержание	
14	Моделирование дискретной и непрерывной случайной величины	
	В результате выполнения лабораторной работы студент приобретает навык в решении задач	
	математической статистики методом Монте - Карло.	
15	Статистическая обработка результатов	
	В процессе выполнения лабораторной работы студент знакомится с функциями, предназначенными	
	для обработки результатаов численного моделирования.	
16	Решение задач фильтрации сигналов	
	В ходе выполнения лабораторной работы студент знакомится со встроенными функциями MathCad,	
	предназначнными для рещения задач данного типа.	

4.3. Самостоятельная работа обучающихся.

№	Рид ормостоятан ной роботи	
Π/Π	Вид самостоятельной работы	
1	Работа с литературой.	
2	Работа с лекционным материалом.	
3	Текущая подготовка к занятиям.	
4	Подготовка к промежуточной аттестации.	
5	Подготовка к текущему контролю.	

4.4. Примерный перечень тем курсовых работ

Учебным планом данной дисциплины курсовой работы не предусмотрено.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Черняк, А. А. Математические расчеты в среде Mathcad: учебник для вузов / А. А. Черняк, Ж. А. Черняк; под общей редакцией А. А. Черняк. — 3-е изд., испр. и доп. — Москва: Издательство Юрайт, 2025. — 163 с. — (Высшее образование). — ISBN 978-5-534-14675-2.	URL: https://urait.ru/bcode/563408 (дата обращения: 24.10.2025).
2	Воскобойников, Ю. Е. Регрессионный анализ данных в пакете МАТНСАD: учебное пособие / Ю. Е. Воскобойников. — Санкт-Петербург: Лань, 2022. — 224 с. — ISBN 978-5-8114-1096-5	https://e.lanbook.com/book/210557 (дата обращения: 25.06.2025)
3	«Воскобойников, Ю. Е. Основы вычислений и программирования в пакете	https://reader.lanbook.com/book/327599#1 (дата обращения: 25.06.2025)

МаthCAD PRIME / Ю. Е. Воскобойников, А. Ф. Задорожный. — 3-е изд., стер. — Санкт-Петербург : Лань, 2023. — 224 с. — ISBN 978-5-507-47815-6» (Воскобойников, Ю. Е. Основы вычислений и программирования в пакете MathCAD PRIME / Ю. Е. Воскобойников, А. Ф. Задорожный. — 3-е изд., стер. — Санкт-Петербург : Лань, 2023. — ISBN 978-5-507-47815-6. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/327599 (дата обращения: 25.06.2025). — Режим доступа: для авториз. пользователей. — С. 1.).

- 6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).
 - Научно-техническая библиотека РУТ (МИИТ) (http://library.miit.ru);
 - Информационный портал Научная электронная библиотека eLIBRARY.RU (www.elibrary.ru);
 - Образовательная платформа «Юрайт» (https://urait.ru/);
 - Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/);
 - Интернет-университет информационных технологий (http://www.intuit.ru/).
- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).
 - Операционная система Windows;
 - Microsoft Office;
 - MS Teams;
 - Поисковые системы.
- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Для проведения занятий лекционного типа требуются аудитории, оснащенные компьютерной техникой и наборами демонстрационного оборудования.

Для лабораторных занятий – наличие персональных компьютеров.

9. Форма промежуточной аттестации:

Экзамен в 6 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

старший преподаватель кафедры «Цифровые технологии управления транспортными процессами»

В.П. Посвянский

Согласовано:

Заведующий кафедрой ЦТУТП

В.Е. Нутович

Председатель учебно-методической

комиссии Н.А. Андриянова