МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 01.03.02 Прикладная математика и информатика, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Системы компьютерной математики

01.03.02 Направление подготовки: Прикладная математика

И

информатика

Направленность (профиль): Математическое моделирование и системный

анализ

Форма обучения: Очная

> Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5665

Подписал: заведующий кафедрой Нутович Вероника

Евгеньевна

Дата: 01.09.2024

1. Общие сведения о дисциплине (модуле).

Целью освоения дисциплины (модуля) является:

- формирование у студента компетенций в области применения вычислительных методов для решения прикладных задач, алгоритмических языков и интегрированных программных сред для реализации современных методов численного анализа.

Задачами дисциплины (модуля) являются:

- изучение классических и специальных разделов математики для разработки математической модели предметной области и изучаемого объекта;
- обучение студентов использованию пакетов прикладных программ для решегния нучно техничечких задач;
- формирование у студентов комплексного подхода к решению задачи, обеспечивающего использования всех доступных средств и технологий.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ПК-3 - Уметь разрабатывать методики выполнения аналитических работ; планировать, организовывать и контролировать аналитические работы в информационно-технологическом проекте.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- сетевые пакеты прикладных программ, используемые различными программные средами для реализации численных алгоритмов.

Уметь:

- применять сетевые пакеты прикладных программ для решения научных и инженерных задач.

Владеть:

- информацией из различных источников, включая сетевые ресурсы сети Интернет, для решения профессиональных и социальных задач.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 3 з.е. (108 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
тип учесных занятии		Семестр №6
Контактная работа при проведении учебных занятий (всего):	80	80
В том числе:		
Занятия лекционного типа	32	32
Занятия семинарского типа	48	48

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 28 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

№	Тематика лекционных занятий / краткое содержание	
п/п	тематика мендионизм запитину краткое водержание	
1	Введение в систему MathCad	
	Рассматриваемые вопросы:	
	- Ввод и редактирование текста и формул	
2	Операторы и типы данных	
	Рассматриваемые вопросы:	
	- определение переменных и функций;	
	- операторы;	
	- управление вычислениями;	

No				
п/п	Тематика лекционных занятий / краткое содержание			
11/11				
	- типы данных; - символьные вычисления.			
3	Средства программирования. Язык программирования MathCAD			
	Рассматриваемые вопросы:			
	- Операторы языка программирования MathCAD			
4	Графики			
	Рассматриваемые вопросы:			
	- средства построения 2-х и 3-х мерных графиков, векторных диаграмм			
5	Линейная алгебра			
	Рассматриваемые вопросы:			
	- способы задания матриц;			
	- элементарные операции с матрицами и векторами.			
	- операторы и функции для решения систем линейных уравнений и задач насобственные значения.			
6	Нелинейные уравнения			
	Рассматриваемые вопросы:			
	- решение нелинейных уравнений и их систем в символьном виде;			
	- функция polyroots для определения корней многочленов;			
	- функция root для решения нелинейного уравнения;			
	- блок Given – Find для решения систем уравнений.			
7	Задачи оптимизации			
- блок Given – Maximize решения задачи условной оптимизации;				
	- задача линейного программирования;			
	- транспортная задача.			
8	Обыкновенные дифференциальные уравнения			
	Рассматриваемые вопросы:			
	- обыкновенные дифференциальные уравнения и их системы;			
	- блок Given - Odesolve для решения ОДУ;			
	- функции для решения систем ОДУ, а также жестких систем.			
9	Уравнения в частных производных			
	- блок Given -Pdesolve для решения УЧП;			
	- функции для решения УЧП различного вида;			
4.0	- функция Relax решения для задачи Дирихле.			
10	Аппроксимация функций			
	Рассматриваемые вопросы:			
	- интерполяция, функции для построения интерполяционных многочленов;			
	- сплайн –интерполяция; - среднеквадратические приближения, функции для построения МНСП;			
	- среднеквадратические приолижения, функции для построения мггстт, - дискретное преобразование Фурье.			
11	Теория вероятностей и математическая статистика			
11	Рассматриваемые вопросы:			
	- функции распределения случайных величин;			
	- генераторы случайных чисел;			
	- обработка статистических данных;			
	- полиномиальная регрессия и регрессия специального вида			
12	Оформление документов			
	Рассматриваемые вопросы:			
	- ввод – вывод данных;			
	- стили текста и формул;			
	- выделение и форматирование текстовых областей, работа с зонами.			

4.2. Занятия семинарского типа.

Лабораторные работы

No	Лаобраторные работы		
	Наименование лабораторных работ / краткое содержание		
п/п			
1	Векторные и матричные функции и опрераторы		
	В ходе выполнения лабораторной работы студент приобретает умение обрабатывать и		
	преобразовывать информацию, заданную в матричной форме.		
2	Решения систем линейных алгебраических уравнений (часть 1)		
	В результате выполнения лабораторной работы студент приобретает умения решать алгебраические уравнения с использованием методов LU- и QR- разложения.		
3			
3	Решения систем линейных алгебраических уравнений (часть 2) В результате выполнения лабораторной работы студент приобретает навыки решать СЛАУ,		
	заданные в символьной форме.		
4	Построение двумерных графиков функций		
7	В результаты выполнения лабораторной работы студент приобретает умение строить графики		
	функций одной перемренной в декартовой и полярной системе координат, а также для функций,		
	заданных в параметричической форме.		
5	Построение трехмерных графиков функций		
	В результаты выполнения лабораторной работы студент приобретает умение строить графики		
	функций двух перемренных в декартовой системе координат, а также для функций, заданных в		
	параметричической форме.		
6	Решение нелинейных уравнений		
	В результаты выполнения лабораторной работы студент приобретает умение решать нелинейные		
	уравнения, как приближенно, так и в символьном виде		
7	Решение систем нелинейных уравнений		
	В результаты выполнения лабораторной работы студент приобретает навыки решения систем		
	нелинейных уравнений, как приближенно, так и в символьном виде.		
8	Решение задач оптимизации (часть 1)		
	В ходе выполнения лабораторной работы студент приобретает умение решать задачи линейного		
	прогораммирования и транспортную задачу, используя функции maximize, minimize.		
9	Решение задач оптимизации (часть 2)		
	В ходе выполнения лабораторной работы студент приобретает умение решать задачи нелинейного		
1.0	прогораммирования, используя функции minerr, find.		
10	Дифференцирование и интегрирование		
	В результаты выполнения лабораторной работы студент приобретает умение вычислять		
1.1	производные и интегралы, как приближенно, так и в символьном виде.		
11	Решение задачи Коши и краевой задачи для обыкновенных дифференциальных		
	уравнений (ОДУ)		
	В результате выполнения лабораторной работы студент приобретает умения решать ОДУ с		
12	помощью функции Odesolve		
12	Решение задачи Коши и краевой задачи для систем ОДУ		
	В результате выполнения лабораторной работы студент приобретает умения решать системы ОДУ с помощью функций rkfixed, sbval.		
13	Решение жестких ОДУ и их систем		
13	В процессе выполнения лабораторной работы студент знакомится с библиотекой прикладных		
	программ, предназначнных для решения задач данного типа.		
	программ, предпазна шных для решения зада г данного гина.		

№			
Π/Π	Наименование лабораторных работ / краткое содержание		
14	Решение уравнений в частных производных (часть 1) В результате выполнения лабораторной работы студент приобретает умения решать уравнения в		
	частных производных, используя функцию Pdesolve.		
15			
	В процессе выполнения лабораторной работы студент приобретает умения решать системы УЧП,		
	используя функцию numol.		
16	1		
	В процессе выполнения лабораторной работы студент приобретает умение решать задачу Дирих для эллиптического уравнения, используя функцию relax.		
17	Аппроксимация функций (часть 1)		
1 /	В ходе выполнения лабораторной работы студент приобретает умение работы с		
	интерполяционными многочленами.		
18	Аппроксимация функций (часть 2)		
	В процессе выполнения лабораторной работы студент приобретает навыки использования сплайн		
	интерполяции.		
19	1		
	В ходе выполнения лабораторной работы студент приобретает умение работы с многочленами		
20	наилучшего среднеквадратического приближения.		
20	Дискретное преобразование Фурье		
	При выполненеии лабораторной работы студент изучает свойства ДПФ и тригонометрического		
21	интерполяционного монгочлена. Моделирование дискретной и непрерывной случайной величины		
21	В результате выполнения лабораторной работы студент приобретает навык в решении задач		
	математической статистики методом Монте - Карло.		
22	Статистическая обработка результатов		
	В процессе выполнения лабораторной работы студент знакомится с функциями, предназначенными		
	для обработки результатаов численного моделирования.		
23	Решение задач фильтрации сигналов		
	В ходе выполнения лабораторной работы студент знакомится со встроенными функциями MathCad,		
	предназначнными для рещения задач данного типа.		
24	Оформление докуменов		
	При выполнении данной работы студент приобретает навыки составленя отчетов о полученных		
	результатах, оформления табличной и графической информации.		

4.3. Самостоятельная работа обучающихся.

No	Вин ормостоятон ной поботи			
Π/Π	Вид самостоятельной работы			
1	Работа с литературой.			
2	Работа с лекционным материалом.			
3	Текущая подготовка к занятиям.			
4	Подготовка к промежуточной аттестации.			
5	Подготовка к текущему контролю.			

4.4. Примерный перечень тем курсовых работ

Учебным планом данной дисциплины курсовой работы не предусмотрено.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Воскобойников, Ю. Е. Регрессионный анализ данных в пакете МАТНСАD: учебное пособие / Ю. Е. Воскобойников. — Санкт-Петербург: Лань, 2022. — 224 с. — ISBN 978-5-8114-1096-5	https://e.lanbook.com/book/210557 (дата обращения: 25.06.2025)
2	Воскобойников, Ю. Е. Основы вычислений и программирования в пакете MathCAD PRIME / Ю. Е. Воскобойников, А. Ф. Задорожный. — 3-е изд., стер. — Санкт-Петербург: Лань, 2023. — ISBN 978-5-507-47815-6	https://reader.lanbook.com/book/327599#1 (дата обращения: 25.06.2025)

- 6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).
 - Научно-техническая библиотека РУТ (МИИТ) (http://library.miit.ru);
- Информационный портал Научная электронная библиотека eLIBRARY.RU (www.elibrary.ru);
 - Образовательная платформа «Юрайт» (https://urait.ru/);
- Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/);
 - Электронно-библиотечная система ibooks.ru (http://ibooks.ru/).
- Интернет-университет информационных технологий (http://www.intuit.ru/).
- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).
 - Операционная система Windows;
 - Microsoft Office;
 - MS Teams;
 - Поисковые системы.

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Для проведения занятий лекционного типа требуются аудитории, оснащенные компьютерной техникой и наборами демонстрационного оборудования.

Для лабораторных занятий – наличие персональных компьютеров.

9. Форма промежуточной аттестации:

Экзамен в 6 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

старший преподаватель кафедры «Цифровые технологии управления транспортными процессами»

В.П. Посвянский

Согласовано:

Заведующий кафедрой ЦТУТП

В.Е. Нутович

Председатель учебно-методической

комиссии Н.А. Андриянова