МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 09.03.02 Информационные системы и технологии, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Системы поддержки принятия решений

Направление подготовки: 09.03.02 Информационные системы и

технологии

Направленность (профиль): Информационные системы и технологии на

транспорте

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5665

Подписал: заведующий кафедрой Нутович Вероника

Евгеньевна

Дата: 22.04.2025

1. Общие сведения о дисциплине (модуле).

Целью освоения учебной дисциплины (модуля) «Системы поддержки принятия решений» является получение студентами знаний о принципах построения информационных хранилищ (ИХ) и информационно-аналитических систем (ИАС) на основе хранилищ данных, этапах построения хранилищ данных, моделях анализа и представления данных в ИАС, а также об использовании ИХ и ИАС на железнодорожном транспорте. В результате изучения дисциплины студенты должны получить необходимые знания об основах теории хранилищ данных, технологии ОLАР и интеллектуального анализа данных, о примерах информационных систем, построенных на основании этих теорий на ж.д. транспорте.

Дисциплина предназначена для получения знаний и решения следующих профессиональных задач (в соответствии с типами задач в профессиональной деятельности):

проектная деятельность:

- предпроектное обследование (инжиниринг) объекта проектирования, системный анализ предметной области, их взаимосвязей;
 - техническое проектирование (реинжиниринг);
 - рабочее проектирование;
 - выбор исходных данных для проектирования;
 - проектирование базовых и прикладных информационных технологий;
- разработка средств реализации информационных технологий (методические, информационные, математические, алгоритмические, программные);

научно-исследовательская деятельность:

- сбор, анализ научно-технической информации, отечественного и зарубежного опыта по тематике исследования.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-2** Способен понимать принципы работы современных информационных технологий и программных средств, в том числе отечественного производства, и использовать их при решении задач профессиональной деятельности;
- **ПК-6** Способен разрабатывать структурные компоненты баз данных как составной части информационной системы, включая развертывание, сопровождение, оптимизацию функционирования.;

ПК-12 - Способен проектировать системы поддержки принятия решений при управлении транспортным комплексом.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Уметь:

-выбирать и применять современные программные средства для построения аналитических систем, включая отечественные аналоги, с учётом специфики предметной области;

-разрабатывать и настраивать структуры хранения данных (схемы «звезда», «снежинка»), реализовывать ETL-процессы и обеспечивать актуальность информации в СППР;

-проектировать аналитические интерфейсы и панели мониторинга для руководителей транспортного комплекса на основе ключевых показателей эффективности.

Знать:

-принципы архитектуры и функционирования современных систем поддержки принятия решений (СППР), включая модели данных, аналитические движки и средства визуализации;

-методы проектирования хранилищ данных, витрин и OLAP-кубов как основы аналитической инфраструктуры СППР;

-требования к данным, алгоритмам и интерфейсам в системах поддержки управления транспортными процессами (расписания, логистика, мониторинг, KPI).

Владеть:

-инструментами с открытым исходным кодом и отечественными аналогами (в области ВІ, ЕТL и дашбордов), применяемыми при разработке и эксплуатации систем поддержки принятия решений;

-методиками оптимизации производительности аналитических запросов, управления метаданными и сопровождения структур данных в распределённых средах;

-технологиями интеграции оперативных и аналитических систем в транспортной сфере, включая построение дашбордов, прогнозных моделей и механизмов раннего предупреждения.

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 5 з.е. (180 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
	Всего	Семестр №8
Контактная работа при проведении учебных занятий (всего):	70	70
В том числе:		
Занятия лекционного типа	40	40
Занятия семинарского типа	30	30

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 110 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

№ п/п	Тематика лекционных занятий / краткое содержание
1	Определение хранилища данных. Основные составляющие ХД.
	Рассматриваемые вопросы:
	- определение хранилища данных/информационного хранилища и его назначение;
	- отличия БД и ХД;
	- роль хранилища данных в бизнес-процессах предприятия.
2	Архитектура ХД. Классические подходы к проектированию витрин ИХ.
	Рассматриваемые вопросы:
	- принципы организации данных в информационном хранилище;

No			
п/п	Тематика лекционных занятий / краткое содержание		
	- классические модели данных «Звезда» и «Снежинка»;		
	- многомерное представление данных.		
3	Архитектура ХД. Классические подходы к проектированию ИХ.		
	Рассматриваемые вопросы:		
	- корпоративная информационная фабрика;		
	- хранилище данных с архитектурой шины;		
	- подход к проектированию хранилища данных по Биллу Инману;		
	- подход к проектированию хранилища данных по Ральфу Кимбаллу;		
	- гиперкуб и способы представления многомерных данных; - тест FASMI;		
	- тест газмі; - базовые операции OLAP.		
4	Современные тенденции в области проектирования ИХ. Источники данных		
7			
	хранилища. Процессы ЕТL.		
	Рассматриваемые вопросы: - подход к организации хранилища в виде озера данных (Data Lake):		
	- проектирование хранилища данных с применением подхода Data Vault;		
	- проектирование хранилища данных с якорной моделью (Anchor);		
	- классификация источников данных;		
	- ЕТL-процессы.		
5	Способы обеспечения необходимого уровня производительности аналитических		
	систем.		
	Рассматриваемые вопросы:		
	- модели обеспечения отказоустойчивости программных компонентов с использованием структур		
	RAID;		
	- In-memory-вычисления;		
	- распределённые вычисления в Apache Hadoop.		
6	Принципы функционирования технологий обеспечения необходимого уровня		
	производительности аналитических систем.		
	Рассматриваемые вопросы:		
	- колоночные СУБД;		
	- концепция программ Map-Reduce;		
7	- особенности работы In-memory систем.		
/	Интеллектуальный анализ данных. Рассматриваемые вопросы:		
	гассматриваемые вопросы: - место интеллектуального анализа данных в системах поддержки принятия решений предприятия;		
	- место интеллектуального анализа данных в системах поддержки принятия решении предприятия, - концепции некоторых аналитических моделей.		
8	Группы корпоративных информационных технологий.		
J	Рассматриваемые вопросы:		
	- корпоративное управление;		
	- управление рисками;		
	- управление производственными процессами.		
9	Группы корпоративных информационных технологий.		
	Рассматриваемые вопросы:		
	- управление закупками, SRM;		
	- управление продажами, CRM;		
	- иные типы систем, основанных на интеллектуальном анализе данных, применяемые в		
	организациях.		

4.2. Занятия семинарского типа.

Лабораторные работы

3.0			
No	Наименование лабораторных работ / краткое содержание		
Π/Π			
1	Построение управляемых ETL-конвейеров с применением платформы Apache		
	Airflow.		
	В результате выполнения задания лабораторной работы студент на практике освоит инструмент		
	оркестрации Apache Airflow: научится разрабатвать конвейеры обработки данных, определять		
	зависимости между задачами, настраивать расписание выполнения и отслеживать состояние		
	процессов.		
2	Загрузка и очистка данных из файловых источников.		
	В результате выполнения задания лабораторной работы студент научится работать с файловыми		
	источниками данных и различными способами представления табличных данных в файлах,		
	овладеет навыками чтения данных из внешних файлов с помощью библиотеки Pandas, приобретет		
	навыки выгрузки структурированных данных в различные форматы.		
3	Построение аналитических витрин.		
	В результате выполнения задания лабораторной работы студент получает навыки проектирования		
	витрин данных по классическим схемам «звезда» и «снежинка», преобразования данных к елевой		
	структуре средствами языка Python и библиотеки Pandas.		
4	Интеграция с внешними сервисами и базами данных.		
	В результате выполнения задания лабораторной работы студент научится работать с внешними		
	сервисами и базами данных как источниками для информационного хранилища, овладеет навыками		
	подключения и получения данных с помощью библиотеки Pandas, приобретет навыки загрузки с		
	версионированием в слой детального хранения данных.		
5	Технология построения аналитических отчётов.		
	В результате выполнения задания лабораторной работы студент получает навыки работы с		
	технологиями аналитической обработки данных средствами языка Python и библиотеки Pandas,		
	построению списочных, статистических и графических отчётов и их экспорта в различных		
	форматах.		

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Подготовка к лабораторным занятиям.
2	Изучение дополнительной литературы.
3	Подготовка к промежуточной аттестации.
4	Подготовка к текущему контролю.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Нечитайло, Н.М. Программирование на языке	URL: https://miitasu.ru/
	Python. Часть 1. / Н.М. Нечитайло Учебное	
	пособие, 320с М.: РУТ (МИИТ), 2021.	

2	Бережной, А. Н. Сохранение данных: теория и	URL:
	практика / А. Н. Бережной. — Москва : ДМК	https://e.lanbook.com/book/82823
	Пресс, 2016. — 317 с. — ISBN 978-5-97060-185-3.	
3	Цехановский, В. В. Управление данными:	URL:
	учебник / В. В. Цехановский, В. Д. Чертовской. —	https://e.lanbook.com/book/168835
	Санкт-Петербург: Лань, 2021. — 432 с. — ISBN	
	978-5-8114-1853-4.	
4	Макшанов, А. В. Системы поддержки принятия	URL:
	решений: учебное пособие / А. В. Макшанов, А.	https://e.lanbook.com/book/147135
	Е. Журавлев, Л. Н. Тындыкарь. — Санкт-	
	Петербург : Лань, 2020. — 108 с. — ISBN 978-5-	
	8114-5344-3.	
5	Григорьев, Ю. А. Реляционные базы данных и	URL:
	системы NoSQL : учебное пособие / Ю. А.	https://e.lanbook.com/book/156492
	Григорьев, А. Д. Плутенко, О. Ю. Плужникова. —	
	Благовещенск : АмГУ, 2018. — 424 с. — ISBN	
	978-5-93493-308-2.	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Электронно-библиотечная система издательства Лань (URL: https://e.lanbook.com)

ОфициальнаядокументацияPandas(URL:https://pandas.pydata.org/pandas-docs/stable/reference/frame.html).

- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).
- SAS OnDemand for Academics— для академического использования свободно распространяемое программное обеспечение.
- SAS Enterprise Guide for OnDemand for Academics v.8 для академического использования свободно распространяемое программное обеспечение.

Microsoft Office, включающий MS Word, MS Excel, MS Access - лицензионное программное обеспечение.

Интернет-браузер - свободно распространяемое программное обеспечение.

Улучшенный текстовый редактор с возможностью управления кодировками, отображением непечатных символов, подсветкой синтаксиса и

разметки (например: Notepad++, EmEditor, PSPad, Atom) - свободно распространяемое или лицензионное программное обеспечение.

При организации обучения по дисциплине (модулю) с применением электронного обучения и дистанционных образовательных технологий необходим доступ каждого студента к информационным ресурсам — библиотечному фонду Университета, сетевым ресурсам и информационнотелекоммуникационной сети «Интернет».

В случае проведении занятий с применением электронного обучения и дистанционных образовательных технологий может понадобиться наличие следующего программного обеспечения (или их аналогов): ОС Windows, Microsoft Office, Интернет-браузер, Microsoft Teams и т.д.

В образовательном процессе, при проведении занятий с применением электронного обучения и дистанционных образовательных технологий, могут применяться следующие средства коммуникаций: ЭИОС РУТ(МИИТ), Microsoft Teams, электронная почта, скайп, Zoom, Telegram и т.п.

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Для проведения занятий по учебной дисциплине «Системы поддержки принятия решений» необходимо:

учебные аудитории для проведения учебных занятий, оснащенные компьютерной техникой и наборами демонстрационного оборудования.

В случае проведении занятий с применением электронного обучения и дистанционных образовательных технологий необходимо наличие компьютерной техники, для организации коллективных и индивидуальных форм общения педагогических работников со студентами, посредством используемых средств коммуникации.

Допускается замена оборудования его виртуальными аналогами.

9. Форма промежуточной аттестации:

Экзамен в 8 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент кафедры «Цифровые технологии управления транспортными процессами»

П.О. Козьяков

Согласовано:

Заведующий кафедрой ЦТУТП

В.Е. Нутович

Председатель учебно-методической

комиссии Н.А. Андриянова