МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы магистратуры по направлению подготовки 27.04.05 Инноватика, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Сквозные технологии Индустрии 4.0 на транспорте

Направление подготовки: 27.04.05 Инноватика

Направленность (профиль): Аналитика для цифровой трансформации на

транспорте

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи:

Подписал: Дата: 17.06.2025 1. Общие сведения о дисциплине (модуле).

Целью освоения учебной дисциплины "Сквозные технологии индустрии 4.0 на транспорте" является:

- развитие аналитических компетенций в контексте смены технологической парадигмы на транспорте, что позволяет проектировать инновации в транспортных системах разного уровня с учетом трендов технологического развития.

Задачей освоения учебной дисциплины "Сквозные технологии индустрии 4.0 на транспорте" является:

- освоение основных понятий.
- 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ПК-3 - Способность управлять цифровой трансформацией организации, региона, страны.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- направления и содержание технологических изменений на транспорте, ключевые технологии новой технологической парадигмы Индустрия 4.0 и их особенности в транспортных организациях.

Уметь:

- определять новые перспективные возможности модернизации и инновационного развития транспортных систем в контексте технологических изменений макросреды, цифровизации и цифровой трансформации экономики, а также определять взаимосвязь, взаимозависимость и взаимовлияние сквозных технологий Индустрии 4.0 в транспортных системах разного уровня.

Владеть:

- навыками рационального стратегического выбора технологий в процессе модернизации, инновационного развития, цифровизации и цифровой трансформации бизнеса с учетом технологического контекста, трендов научно-технического и инновационно-технологического развития.
 - 3. Объем дисциплины (модуля).

3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 6 з.е. (216 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
тип учесных занятии		Семестр №3
Контактная работа при проведении учебных занятий (всего):	32	32
В том числе:		
Занятия лекционного типа	16	16
Занятия семинарского типа	16	16

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 184 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

№ п/п	Тематика лекционных занятий / краткое содержание
1	Парадигма «Индустрия 4.0»: характеристика, особенности и отличия от
	предыдущих технологических парадигм
	Рассматриваемые вопросы:
	- технологическое развитие как смена технологических парадигм;
	- технологическая парадигма как контекст стратегического развития транспорта;
	- четвертая промышленная революция;
	- технологическая парадигма «Индустрия 4.0» и ее ключевые характеристики;

№	Тематика лекционных занятий / краткое содержание	
п/п		
	- этапы формирования новой технологической парадигмы;	
	- особенности интеграции новых технологий, соответствующих технологической парадигме	
	«Индустрия 4.0» в транспортные системы различного уровня.	
2	Сквозные технологии «Индустрии 4.0»: характеристика и области применения в	
	транспортных системах	
	Рассматриваемые вопросы:	
	- сквозные технологии «Индустрии 4.0» и их классификация;	
	- сквозные цифровые технологии: большие данные; автономные (беспилотные) транспортные	
	системы; промышленный интернет вещей; искусственный интеллект; технологии беспроводной	
	связи; робототехника, мехатроника и сенсорика; квантовые технологии; системы распределенного	
	реестра; технологии виртуальной и дополненной реальностей;	
	- промышленные технологии «Индустрии 4.0»: высокоскоростной наземный транспорт,	
	наноматериалы, композиты и новые конструкционные материалы, альтернативная и распределенная	
	энергетика, энергосбережение, суперконденсаторы, аддитивные технологии, биотехнологии и	
	биоинженерия, когнитивные технологии, космические/спутниковые технологии, экология и	
	ресурсосбережение и др.	
3	Архитектура современных транспортных систем различного уровня и перспективы	
	ее развития	
	Рассматриваемые вопросы:	
	- классификация корпоративных информационных систем в транспортных организациях;	
	- компоненты и функционал корпоративных информационных систем;	
	- необходимость интеграции корпоративных информационных систем на базе единой платформы;	
	- интеграция корпоративных информационных систем;	
	- технологические приемы и методы проектирования и развития единых информационных	
	платформ в транспортных организациях;	
	- платформы;	
	- микросервисная архитектура организации современных интегрированных информационных	
	систем.	

4.2. Занятия семинарского типа.

Лабораторные работы

No	Наименование лабораторных работ / краткое содержание	
п/п		
1	Сквозные технологии «Индустрии 4.0»: характеристика и области применения в	
	транспортных системах	
	Рассматриваемые вопросы:	
	- разработка концепции интеграции сквозных технологий «Индустрии 4.0» в технологический	
	комплекс железных дорог;	
	- разработка концепции интеграции сквозных технологий "Индустрии 4.0" в мультимодальных	
	грузовых и пассажирских перевозках;	
	- разработка концепции интеграции сквозных технологий "Индустрии 4.0" в национальные,	
	международные и глобальные транспортные системы;	
	- новые конструкционные материалы;	
	- наноиндустрия;	
	- аддитивные технологии;	
	- высокоскоростной транспорт;	
	- энергетика и альтернативные источники электроэнергии;	
	- микро- и нано- электроника;	

No	Наименование лабораторных работ / краткое содержание	
Π/Π		
	- передача электроэнергии;	
	- суперконденсаторы;	
	- биотехнологии и био-инжиниринг;	
	- ресурсосбережение;	
	- переработка и утилизация отхождов;	
	- экология;	
	- инфокоммуникации;	
	- средства связи;	
	- интернет вещи;	
	- сенсоры и датчики;	
	- большие данные;	
	- распредленный реестр;	
	- искусственный интеллект (машинное обучение);	
	- автономный (беспилотный) транспорт.	
2	Архитектура современных транспортных систем различного уровня и перспективы	
	их развития	
	Рассматриваемые вопросы:	
	- разработка проекта архитектуры корпоративной платформы транспортной компании на базе	
	сквозных информационных технологий «Индустрии 4.0»;	
	- разраюботка проекта архитектуры информационной сети для обеспечения коммуникаций	
	транспортных организаций и стейкхолдеров на базе сквозных информационных технологий	
	"Индустрии 4.0";	
	- принципы интеграции информационных систем в транспортных организациях;	
	- современная архитектура информационных систем в транспортных организациях;	
	- обеспечение кибербезопасности в современных транспортных системах.	

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Парадигма «Индустрия 4.0»: характеристика, особенности и отличия от
	предыдущих технологических парадигм
2	Сквозные технологии «Индустрии 4.0»: характеристика и области применения в
	транспортных системах
3	Архитектура современных транспортных систем различного уровня и перспективы
	ее развития
4	Подготовка к промежуточной аттестации.
5	Подготовка к текущему контролю.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

` •		
No	Библиографическое описание	Место доступа
Π/Π	внолнографи теское описание	тиссто доступа
1	Технологии Четвертой	НТБ РУТ (МИИТ)
	промышленной революции.	

	T	,
	Шваб, К., Дэвис Н. М.: ЭКСМО,	
	2018. – 320 c. , 2018	
2	Технологические революции и	ISBN 978-5-7749-0626-0
	финансовый капитал: динамика	
	пузырей и периодов процветания	
	Перес, К. М.: Дело, 2011	
3	Четвертая индустриальная	НТБ РУТ (МИИТ
	революция (Industrie 4.0) в	
	транспортной и сопутствующих	
	отраслях Асаул, А. Н. А. Н.	
	Асаул, И. Г. Малыгин, В. И.	
	Комашинский // Проблемы	
	управления рисками в	
	техносфере. – 2016. – № 2(38). –	
	C. 70–78. , 2016	
1	Национальный проект «Цифровая	https://национальныепроекты.pф/projects/tsifrovaya-
	экономика»	ekonomika
2	Новая темпоральность цифровой	
	цивилизации: будущее уже	DOI: 10.18721/JHSS.10202
	наступило Шестакова, И.Г.	
	Научно-технические ведомости	
	СПбГПУ. Гуманитарные и	
	общественные науки, 201	
3	The Structure of Scientific	http://psylib.org.ua/books/kunts01/index.htm
	Revolutions Kuhn, T.S. Chicago,	
	1962	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (https://www.miit.ru/);

Официальный сайт Минтранса России (https://mintrans.gov.ru/);

Научно-техническая библиотека РУТ (МИИТ) (http:/library.miit.ru);

Информационный портал Научная электронная библиотека eLIBRARY.RU (www.elibrary.ru);

Образовательная платформа «Открытое образование» (https://openedu.ru).

- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).
 - 1. Microsoft Internet Explorer (или другой браузер);

- 2. Операционная система Microsoft Windows;
- 3. Microsoft Office;
- 4. При проведении занятий с применением электронного обучения и дистанционных образовательных технологий,

могут применяться следующие средства коммуникаций: ЭИОС РУТ(МИИТ), Microsoft Teams, электронная почта, скайп,

WhatsApp и т.п.

- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).
- 1. Учебные аудитории для проведения занятий лекционного типа, оснащенные компьютерной техникой и наборами демонстрационного оборудования.
 - 9. Форма промежуточной аттестации:

Экзамен в 3 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

профессор, профессор, д.н. кафедры «Вагоны и вагонное хозяйство»

С.В. Беспалько

Согласовано:

Председатель учебно-методической комиссии

С.В. Володин