МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы магистратуры по направлению подготовки 15.04.06 Мехатроника и робототехника, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Современные концепции развития робототехники

Направление подготовки: 15.04.06 Мехатроника и робототехника

Направленность (профиль): Роботы и робототехнические системы

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 610876

Подписал: заведующий кафедрой Григорьев Павел

Александрович

Дата: 01.06.2025

1. Общие сведения о дисциплине (модуле).

Целями освоения дисциплины (модуля) являются:

- формирование умения использовать современные информационные технологии и программные средства при моделировании робототехнических систем;
- освоение методов разработки экологичных и безопасных решений в робототехнике с учетом рационального использования ресурсов;
- развитие навыков оптимизации затрат при проектировании и эксплуатации робототехнических систем;
- приобретение компетенций по разработке и внедрению нового технологического оборудования в робототехнике;
- формирование способности организовывать профессиональную подготовку в области современных робототехнических систем;
- овладение методами анализа научно-технической информации и патентного поиска в сфере робототехники.

Задачами дисциплины (модуля) являются:

- изучение современных программных средств для моделирования робототехнических систем и технологических процессов;
- освоение методов цифрового проектирования и виртуального тестирования робототехнических комплексов;
- анализ экологических аспектов разработки и эксплуатации робототехнических систем;
- изучение методов энергосбережения и ресурсосбережения при создании робототехнических устройств;
- освоение методик расчета экономической эффективности робототехнических решений;
- изучение подходов к снижению эксплуатационных затрат робототехнических систем;
- анализ современных тенденций развития технологического оборудования в робототехнике;
- освоение принципов внедрения инновационных робототехнических решений в производство;
- изучение методик организации образовательного процесса по направлениям робототехники;
- формирование навыков разработки учебно-методических материалов по современной робототехнике;
- освоение методов анализа научно-технической литературы и патентных исследований в робототехнике;

- развитие навыков систематизации и обобщения зарубежного опыта в области робототехнических систем;
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-4** Способен использовать современные информационные технологии и программные средства при моделировании технологических процессов;
- **ОПК-7** Способен разрабатывать современные экологичные и безопасные методы рационального использования сырьевых и энергетических ресурсов в машиностроении;
- **ОПК-8** Способен оптимизировать затраты на обеспечение деятельности производственных подразделений;
- **ОПК-9** Способен разрабатывать и осваивать новое технологическое оборудование;
- **ОПК-14** Способен организовывать и осуществлять профессиональную подготовку по образовательным программам в области машиностроения;
- **ПК-4** Способен осуществлять анализ научно-технической информации, обобщать отечественный и зарубежный опыт в области мехатроники и робототехники, средств автоматизации и управления, проводить патентный поиск.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- современные информационные технологии и программные средства для моделирования робототехнических систем;
- принципы разработки экологичных и энергоэффективных робототехнических решений;
- методы экономического анализа и оптимизации затрат при создании робототехнических систем;
- современные тенденции развития технологического оборудования в робототехнике;
- методики организации образовательного процесса в области робототехники;
- методы анализа научно-технической информации и проведения патентных исследований.

Уметь:

- применять современные программные комплексы для моделирования робототехнических систем;
- разрабатывать энергоэффективные и экологичные решения для робототехнических устройств;
- проводить расчеты экономической эффективности робототехнических проектов;
- анализировать и внедрять новое технологическое оборудование в робототехнике;
- организовывать учебный процесс по современным направлениям робототехники;
- систематизировать и анализировать научно-техническую информацию в области робототехники.

Владеть:

- навыками работы с современными системами компьютерного моделирования в робототехнике;
- методами проектирования экологичных и ресурсосберегающих робототехнических систем;
- технологиями экономического обоснования робототехнических проектов;
- практикой внедрения инновационного оборудования в производственные процессы;
 - методиками преподавания современных концепций робототехники;
- навыками проведения научно-исследовательской работы в области робототехники.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 4 з.е. (144 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
	Всего	Семестр №3
Контактная работа при проведении учебных занятий (всего):	32	32

В том числе:		
Занятия лекционного типа	16	16
Занятия семинарского типа	16	16

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 112 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

№	Тематика лекционных занятий / краткое содержание			
Π/Π				
1	Традиционные и коллаборативные промышленные роботы			
	Рассматриваемые вопросы:			
	- классификация современных роботов и робототехнических систем;			
	- особенности применения роботов;			
	- направления совершенствования роботов и робототехнических систем.			
2	Безопасное взаимодействие робота с человеком на производстве			
	Рассматриваемые вопросы:			
	- требования безопасности при взаимодействии с роботами;			
	- системы обеспечения безопасности.			
3	Машинное зрение в робототехнических решениях			
	Рассматриваемые вопросы:			
	- особенности применения машинного зрения;			
	- технические средства для реализации машинного зрения;			
	- программные средства для реализации машинного зрения.			
4	Технологии искусственного интеллекта и машинного обучения			
	Рассматриваемые вопросы:			
	- предпосылки для применения искусственного интеллекта и машинного обучения;			
	- реализация технологий.			
5	Кибербезопасность			
	Рассматриваемые вопросы:			
	- необходимость обеспечения кибербезопасности;			

$N_{\underline{0}}$	Томотумо чемумомум и раздатуй / утотумо се четумому		
п/п	Тематика лекционных занятий / краткое содержание		
	- нормативно-правовые основы обеспечения кибербезопасности;		
	- применение систем обеспечения кибербезопасности.		
6	Технологии безлюдного производства		
	Рассматриваемые вопросы:		
	- предпосылки создания безлюдного производства;		
	- технические средства реализации технологии безлюдного производства;		
	- программные средства реализации технологии безлюдного производства.		
7	Современные транспортные роботы как мехатронные системы		
	Рассматриваемые вопросы:		
	- организация работ с использованием транспортных роботов;		
	- устройство и принципиальные особенности транспортных роботов;		
	- системы управления транспортными роботами.		
8	Мобильные роботы для выполнения работ на вертикальных поверхностях		
	Рассматриваемые вопросы:		
	- виды работ, требующие использования мобильных роботов, работающих на вертикальных		
	поверхностях;		
	- конструктивные особенности мобильных роботов для вертикальных поверхностей.		

4.2. Занятия семинарского типа.

Практические занятия

No	Tovoryva wastawy sovery sovery /wastwo		
Π/Π	Тематика практических занятий/краткое содержание		
1	Традиционные и коллаборативные промышленные роботы		
	В результате выполнения практического задания студенты смогут классифицировать различные		
	типы промышленных роботов, определить их особенности и возможности совершенствования.		
2	Безопасное взаимодействие робота с человеком на производстве		
	В результате выполнения практического задания студенты научатся разрабатывать концепты		
	систем безопасности для взаимодействия человека и робота, учитывая существующие требовани		
	стандарты.		
3	Машинное зрение в робототехнических решениях		
	В результате выполнения практического задания студенты получат навыки выбора и применения		
	технических и программных средств для реализации машинного зрения в робототехнике.		
4	Технологии искусственного интеллекта и машинного обучения		
	В результате выполнения практического задания студенты смогут применять основные алгоритмы		
	искусственного интеллекта и машинного обучения в робототехнических системах.		
5	Кибербезопасность		
	В результате выполнения практического задания студенты научатся анализировать потенциальные		
	угрозы и предлагать меры по обеспечению кибербезопасности робототехнических систем.		
6	Технологии безлюдного производства		
	В результате выполнения практического задания студенты смогут разрабатывать концепции		
	безлюдных производственных систем, включая выбор технических и программных средств.		
7	Современные транспортные роботы как мехатронные системы		
	В результате выполнения практического задания студенты ознакомятся с принципами работы и		
	управления транспортными роботами.		
8	Мобильные роботы для выполнения работ на вертикальных поверхностях		
	В результате выполнения практического задания студенты изучат конструктивные особенности		

№ п/п	Тематика практических занятий/краткое содержание
	мобильных роботов для вертикальных поверхностей и научатся разрабатывать решения для
	выполнения специфических задач.

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Текущая подготовка к практическим занятиям.
2	Подготовка к промежуточной аттестации.
3	Подготовка к текущему контролю.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Чигарев, А. В. Мехатроника и динамика минироботов: учебное пособие / А. В. Чигарев. — Минск: БНТУ, 2017. — 500 с. — ISBN 978-985-583-140-3.	https://e.lanbook.com/book/248078 (дата обращения: 30.05.2024). — Текст: электронный.
2	Форд, М. Власть роботов: Как подготовиться к неизбежному / М. Форд. – Москва: Альпина Паблишер, 2022. – 326 с. – ISBN 978-5-00139-779-3.	https://e.lanbook.com/book/367766 (дата обращения: 30.05.2024). — Текст: электронный.
3	Фурсенко, С. Н. Автоматизация технологических процессов: учебное пособие / С. Н. Фурсенко, Е. С. Якубовская, Е. С. Волкова. – Минск: Новое знание, 2014. – 376 с. – ISBN 978-985-475-712-4.	https://e.lanbook.com/book/64774 (дата обращения: 30.05.2024). — Текст: электронный.

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (https://www.miit.ru/).

Научно-техническая библиотека РУТ (МИИТ) (http:/library.miit.ru).

Образовательная платформа «Юрайт» (https://urait.ru/).

Общие информационные, справочные и поисковые системы «Консультант Плюс», «Гарант».

Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/).

Электронно-библиотечная система ibooks.ru (http://ibooks.ru/).

Электронная библиотека УМЦ по образованию на железнодорожном транспорте (https://umczdt.ru/books/).

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Microsoft Internet Explorer (или другой браузер). Операционная система Microsoft Windows. Microsoft Office.

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебные аудитории для проведения учебных занятий, оснащенные компьютерной техникой и наборами демонстрационного оборудования.

9. Форма промежуточной аттестации:

Зачет в 3 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

заведующий кафедрой, доцент, к.н. кафедры «Наземные транспортнотехнологические средства»

П.А. Григорьев

Согласовано:

Заведующий кафедрой НТТС

П.А. Григорьев

Председатель учебно-методической

комиссии С.В. Володин