МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы магистратуры по направлению подготовки 15.04.06 Мехатроника и робототехника, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Современные концепции развития робототехники

Направление подготовки: 15.04.06 Мехатроника и робототехника

Направленность (профиль): Роботы и робототехнические системы

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 6216

Подписал: заведующий кафедрой Неклюдов Алексей

Николаевич

Дата: 01.06.2024

1. Общие сведения о дисциплине (модуле).

Целями освоения дисциплины (модуля) являются:

- знакомство студентов с направлениями развития современных роботов и робототехнических систем;
- изучение принципа действия, устройства, технических характеристик современных роботов и робототехнических систем;
- изучение организации работ с применением современных роботов и робототехнических систем.

Задачами дисциплины (модуля) являются:

- формирование устойчивого комплекса знаний об устройстве и принципиальных особенностях современных роботов и робототехнических систем;
- получение системного представления об использовании современных роботов и робототехнических систем при реализации технологических процессов;
- формирование у студентов представления о возможных путях совершенствования современных роботов и робототехнических систем.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-4** Способен использовать современные информационные технологии и программные средства при моделировании технологических процессов;
- **ОПК-7** Способен разрабатывать современные экологичные и безопасные методы рационального использования сырьевых и энергетических ресурсов в машиностроении;
- **ОПК-8** Способен оптимизировать затраты на обеспечение деятельности производственных подразделений;
- **ОПК-9** Способен разрабатывать и осваивать новое технологическое оборудование;
- **ОПК-14** Способен организовывать и осуществлять профессиональную подготовку по образовательным программам в области машиностроения;
- **ПК-4** Способен осуществлять анализ научно-технической информации, обобщать отечественный и зарубежный опыт в области мехатроники и робототехники, средств автоматизации и управления, проводить патентный поиск.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- знать современные тенденции и направления развития робототехники в промышленности и специализированных применениях;
- знать концепции Industry 4.0/5.0 и роль робототехники в интеллектуальных производственных системах;
- знать принципы коллаборативной робототехники и особенности взаимодействия человека и робота;
- знать перспективные материалы и технологии, применяемые в создании современных робототехнических комплексов;
- знать основы искусственного интеллекта и машинного обучения в контексте управления робототехническими системами;
- знать экономические аспекты внедрения современных робототехнических решений и методики оценки их эффективности.

Уметь:

- уметь анализировать перспективы развития робототехники в различных отраслях промышленности;
- уметь оценивать целесообразность применения коллаборативных роботов для решения конкретных производственных задач;
- уметь выбирать перспективные материалы и технологии для проектирования современных робототехнических систем;
- уметь применять методы искусственного интеллекта для оптимизации работы робототехнических комплексов;
- уметь рассчитывать экономическую эффективность внедрения современных робототехнических решений;
- уметь разрабатывать концепции модернизации существующих робототехнических систем с учетом современных тенденций.

Владеть:

- владеть методикой анализа современных тенденций развития робототехники;
- владеть методами проектирования человеко-машинного интерфейса для коллаборативных роботов;
- владеть навыками сравнительного анализа новых материалов и технологий для роботостроения;
- владеть базовыми алгоритмами искусственного интеллекта для адаптивного управления роботами;

- владеть методами расчета ключевых показателей эффективности робототехнических систем;
- владеть методикой обоснования инвестиций в модернизацию робототехнических комплексов.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 4 з.е. (144 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Two was few we conserved	Количество часов	
Тип учебных занятий		Семестр №3
Контактная работа при проведении учебных занятий (всего):	32	32
В том числе:		
Занятия лекционного типа	16	16
Занятия семинарского типа	16	16

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 112 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

$N_{\underline{0}}$	Tovoryva voluvova volustivi / morvo o o vorustivi				
Π/Π	Тематика лекционных занятий / краткое содержание				
1	Традиционные и коллаборативные промышленные роботы				
	Рассматриваемые вопросы:				
	- классификация современных роботов и робототехнических систем;				
	- особенности применения роботов;				
	- направления совершенствования роботов и робототехнических систем.				
2	Безопасное взаимодействие робота с человеком на производстве				
	Рассматриваемые вопросы:				
	- требования безопасности при взаимодействии с роботами;				
	- системы обеспечения безопасности.				
3	Машинное зрение в робототехнических решениях				
	Рассматриваемые вопросы:				
	- особенности применения машинного зрения;				
	- технические средства для реализации машинного зрения;				
	- программные средства для реализации машинного зрения.				
4	Технологии искусственного интеллекта и машинного обучения				
	Рассматриваемые вопросы:				
	- предпосылки для применения искусственного интеллекта и машинного обучения;				
	- реализация технологий.				
5	Кибербезопасность				
	Рассматриваемые вопросы:				
	- необходимость обеспечения кибербезопасности;				
	- нормативно-правовые основы обеспечения кибербезопасности;				
	- применение систем обеспечения кибербезопасности.				
6	Технологии безлюдного производства				
	Рассматриваемые вопросы:				
	- предпосылки создания безлюдного производства;				
	- технические средства реализации технологии безлюдного производства;				
7	- программные средства реализации технологии безлюдного производства. Современные транспортные роботы как мехатронные системы				
,					
	Рассматриваемые вопросы: - организация работ с использованием транспортных роботов;				
	- устройство и принципиальные особенности транспортных роботов;				
	- системы управления транспортными роботами.				
8	Мобильные роботы для выполнения работ на вертикальных поверхностях				
	Рассматриваемые вопросы:				
	- виды работ, требующие использования мобильных роботов, работающих на вертикальных				
	поверхностях;				
	- конструктивные особенности мобильных роботов для вертикальных поверхностей.				
L	1 1 1				

4.2. Занятия семинарского типа.

Практические занятия

№ п/п	Тематика практических занятий/краткое содержание
1	Традиционные и коллаборативные промышленные роботы
	В результате выполнения практического задания студенты смогут классифицировать различные
	типы промышленных роботов, определить их особенности и возможности совершенствования.

№	Тематика практических занятий/краткое содержание				
Π/Π	тематика практи теских запитии краткое содержание				
2	Безопасное взаимодействие робота с человеком на производстве				
	В результате выполнения практического задания студенты научатся разрабатывать концепты				
	систем безопасности для взаимодействия человека и робота, учитывая существующие требования				
	стандарты.				
3	3 Машинное зрение в робототехнических решениях				
В результате выполнения практического задания студенты получат навыки выбора и при					
	технических и программных средств для реализации машинного зрения в робототехнике.				
4	Технологии искусственного интеллекта и машинного обучения				
	В результате выполнения практического задания студенты смогут применять основные алгорит				
	искусственного интеллекта и машинного обучения в робототехнических системах.				
5	Кибербезопасность				
	В результате выполнения практического задания студенты научатся анализировать потенциальные				
	угрозы и предлагать меры по обеспечению кибербезопасности робототехнических систем.				
6	Технологии безлюдного производства				
	В результате выполнения практического задания студенты смогут разрабатывать концепции				
	безлюдных производственных систем, включая выбор технических и программных средств.				
7	Современные транспортные роботы как мехатронные системы				
	В результате выполнения практического задания студенты ознакомятся с принципами работы и				
	управления транспортными роботами.				
8	Мобильные роботы для выполнения работ на вертикальных поверхностях				
	В результате выполнения практического задания студенты изучат конструктивные особенности				
	мобильных роботов для вертикальных поверхностей и научатся разрабатывать решения для				
	выполнения специфических задач.				

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Текущая подготовка к практическим занятиям.
2	Подготовка к промежуточной аттестации.
3	Подготовка к текущему контролю.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа	
1	Чигарев, А. В. Мехатроника и динамика минироботов: учебное пособие / А. В. Чигарев. — Минск: БНТУ, 2017. — 500 с. — ISBN 978-985-583-140-3.	https://e.lanbook.com/book/248078 (дата обращения: 30.05.2024). — Текст: электронный.	
2	Форд, М. Власть роботов: Как подготовиться к неизбежному / М. Форд. – Москва: Альпина Паблишер, 2022. – 326 с. – ISBN 978-5-00139-779-3.	https://e.lanbook.com/book/367766 (дата обращения: 30.05.2024). — Текст: электронный.	

Фурсенко, С. Н. Автоматизация технологических процессов: учебное пособие / С. Н. Фурсенко, Е. С. Якубовская, Е. С. Волкова. – Минск: Новое знание, 2014. – 376 с. – ISBN 978-985-475-712-4.

https://e.lanbook.com/book/64774 (дата обращения: 30.05.2024). — Текст: электронный.

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (https://www.miit.ru/).

Научно-техническая библиотека РУТ (МИИТ) (http:/library.miit.ru).

Образовательная платформа «Юрайт» (https://urait.ru/).

Общие информационные, справочные и поисковые системы «Консультант Плюс», «Гарант».

Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/).

Электронно-библиотечная система ibooks.ru (http://ibooks.ru/).

Электронная библиотека УМЦ по образованию на железнодорожном транспорте (https://umczdt.ru/books/).

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Microsoft Internet Explorer (или другой браузер).

Операционная система Microsoft Windows.

Microsoft Office.

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебные аудитории для проведения учебных занятий, оснащенные компьютерной техникой и наборами демонстрационного оборудования.

9. Форма промежуточной аттестации:

Зачет в 3 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, к.н. кафедры «Наземные транспортно-технологические средства»

П.А. Григорьев

Согласовано:

Заведующий кафедрой НТТС

А.Н. Неклюдов

Председатель учебно-методической

комиссии

С.В. Володин