МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА (МИИТ)»

СОГЛАСОВАНО: УТВЕРЖДАЮ:

Выпускающая кафедра МиТ Директор ИПСС Заведующий кафедрой МиТ

В.М. Круглов Т.В. Шепитько

08 сентября 2017 г. 08 сентября 2017 г.

Кафедра "Строительная механика"

Автор Мелешонков Евгений Иванович, к.т.н., доцент

АННОТАЦИЯ К РАБОЧЕЙ ПРОГРАММЕ ДИСЦИПЛИНЫ

«Сопротивление материалов»

Специальность: 23.05.06 – Строительство железных дорог,

мостов и транспортных тоннелей

Специализация: Тоннели и метрополитены

Квалификация выпускника: Инженер путей сообщения

М.Ф. Гуськова

Форма обучения: очная

Год начала подготовки 2015

Одобрено на заседании Одобрено на заседании кафедры

Учебно-методической комиссии института

Протокол № 1 06 сентября 2017 г.

Председатель учебно-методической

комиссии

Протокол № 2 04 сентября 2017 г. Заведующий кафедрой

В.Б. Зылёв

1. Цели освоения учебной дисциплины

«Сопротивление материалов» – общетехническая дисциплина, лежащая в основе ря-да общетехнических и специальных дисциплин. На материале сопротивления материалов базируются такие общетехнические дисциплины, как «Статика сооружений», «Динамика и устойчивость сооружений», «Теория упругости и пластичности», и др. Сюда следует отне-сти и большое число специальных инженерных дисциплин, связанных с расчетами мостов, тоннеле й, железнодорожного пути и других транспортных сооружений. Изучение сопротивления материалов весьма способствует формированию инженерного мышления, позволяющей будущему специалисту научно анализировать проблемы его профессиональной области, использовать на практике приобретённые им базовые знания, самостоятельно, используя современные образовательные и информационные технологии, овладевать той новой информацией, с которой ему придётся столкнуться в производственной и научной деятельности. Целью освоения сопротивления материалов является изучение поведения стержней при различных видах деформаций, оценивать их надежность и долговечность. На данной основе становится возможным построение и исследование механико-математических моделей, адекватно описывающих работу реальных сооружений.. При изучении сопротивления материалов вырабатываются навыки практического использования изучаемых методов..

2. Место учебной дисциплины в структуре ОП ВО

Учебная дисциплина "Сопротивление материалов" относится к блоку 1 "Дисциплины (модули)" и входит в его базовую часть.

3. Планируемые результаты обучения по дисциплине (модулю), соотнесенные с планируемыми результатами освоения образовательной программы

Процесс изучения дисциплины направлен на формирование следующих компетенций:

ОПК-7	способностью применять методы расчета и оценки прочности
	сооружений и конструкций на основе знаний законов статики и динамики
	твердых тел, о системах сил, напряжениях и деформациях твердых и
	жидких тел
ОПК-13	владением основами расчета и проектирования элементов и устройств
	различных физических принципов действия
ПК-18	способностью выполнять статические и динамические расчеты
	транспортных сооружений с использованием современного
	математического обеспечения

4. Общая трудоемкость дисциплины составляет

10 зачетных единиц (360 ак. ч.).

5. Образовательные технологии

Преподавание дисциплины «Сопротивление материалов» осуществляется в форме лекций и практических занятий. Лекции проводятся в традиционной классно-урочной организационной форме, по типу управления познавательной деятельностью и являются традиционными классически-лекционными (объяснительно-иллюстративные). На лекциях используется как обычная меловая доска, так и экран, дублирующий монитор компьютера. Практические занятия организованы с использованием обычных технологий обучения, а также с использованием персональных компьютеров студентами в

дисплейном классе. Самостоятельная работа студента организована с использованием традиционных видов работы с конспектом лекций, основной и дополнительной методической литературой. В отдельных случаях практические занятия дополняются испытанием небольших физических моделей, вплоть до замеров отдельных искомых в решении величин. В этом случае испытание модели обычно сопровождается предварительным расчетом на компьютере. Оценка полученных знаний, умений и навыков основана на модульно-рейтинговой технологии. Весь курс разбит на 36 разделов, представляющих собой логически завершенный объём учебной информации. Фонды оценочных средств освоенных компетенций включают как вопросы теоретического характера для оценки знаний, так и задания практического содержания (выполнение расчетно-графических работ). Теоретические знания проверяются путём применения таких организационных форм, как индивидуальные опросы, решение тестов на бумажных носителях..

6. Содержание дисциплины (модуля), структурированное по темам (разделам)

РАЗДЕЛ 1

Введение. Роль курса «Сопротивления материалов» в образовании инженера - строителя. Гипотезы и принципы. Виды нагрузок. Расчетные схемы

РАЗДЕЛ 2

Напряжения, деформации и перемещения. Внутренние усилия в поперечных сечениях стержней

РАЗДЕЛ 3

Построениие эпюр внутренних усилий

РАЗДЕЛ 4

Растяжение и сжатие стержней. Напряжения, деформации. Закон Гука

РАЗДЕЛ 5

Механические свойства материалов. Диаграммы растяжения и сжатия. Расчеты на прочность

РАЗДЕЛ 6

Статически неопределимые задачи при растяжении-сжатии

РАЗДЕЛ 7

Геометрические характеристики поперечных сечений Статические моменты, центр тяжести. Осевые и центробежные моменты инерции. Моменты инерции простейших фигур

РАЗДЕЛ 8

Главные моменты инерции. Вычисление моментов инерции при параллельном переносе и повороте осей

РАЗДЕЛ 9

Прямой изгиб. Основные определения и гипотезы. Нормальные напряжения

РАЗДЕЛ 10

Рациональные сечения при изгибе. Формула Журавского. Понятие центра изгиба

РАЗДЕЛ 11

Расчет составных балок. Изгиб стержней в упруго-пластической сдадии

РАЗДЕЛ 12

Сдвиг и кручение. Понятие о чистом сдвиге. Кручение стержней с круглым поперечным сечением. Напряжения и перемещения при кручении

РАЗДЕЛ 13

Статически неопределимые задачи при кручении

РАЗДЕЛ 14

Напряженное состояние в точке и его виды. Понятие о тензоре напряжений

РАЗДЕЛ 15

Напряжения в наклонных площадках при плоском напряженном состоянии

РАЗДЕЛ 16

Главные наппряжения и определение положния главных Экстремальные касательные напряжения

РАЗДЕЛ 17

Деформированноесостояние в точке. Главные деформации. Экспериментальное определение деформаций и напряжений методом тензометрии

РАЗДЕЛ 18

Заключительная лекция

Экзамен

РАЗДЕЛ 19

Перемещения при изгибе. Определение перемещений при изгибе. Метод непосредственного интегрирования

РАЗДЕЛ 20

Универсальное уравнение упругой линии (метод начальных параметров)

РАЗДЕЛ 21

Формула Максвелла-Мора. Техника вычислений интегрвла Мора

РАЗДЕЛ 22

Статически неопределилимые Расчет статически неопределимых систем по методу сил

РАЗДЕЛ 23

Особенности работы статически неопределимых систем в упругопластической ста-дии. Метод предельного равновесия

РАЗЛЕЛ 24

Особенности работы статически неопределимых систем при ползучести. Релаксация напряжений

РАЗДЕЛ 25

Балка на сплошном упругом основании. Дифференциальное уравнение для функции проги-бов и его общий интеграл

РАЗДЕЛ 26

Расчет полубесконечной и бесконечной балки. Краевой эффект. Понятие о рас-чете коротких балок

РАЗДЕЛ 27

Сложное сопротивление. Построение эпюр. Косой изгиб

РАЗДЕЛ 28

Внецентренное растяжение-сжатие. Ядро сечения. Изгиб с кручением. Определение перемещений при сложном воздействии

РАЗДЕЛ 29

Кручение стержней некруглого поперечного сечения. Депланация некруглых сечений при кручении. Понятие о свободном и стесненном кручении. Свободное кручение стержней сплошного прямоугольного сечения

РАЗДЕЛ 30

Свободное кручениетонкостенных стержней замкнутого профиля. Формула Бредта. Расчеты на прочность и жесткость

РАЗДЕЛ 31

Оценка прочности при сложном напряженном состоянии

РАЗДЕЛ 32

Устойчивость сжатых стержней. Устойчивая и неустойчивая формы равновесия. Понятие о критической силе для сжатых стержней. Формула Эйлера

РАЗДЕЛ 33

Практические способы расчета сжатых стержней. Продольно-поперечный изгиб

РАЗДЕЛ 34

Динамическое действие нагрузки. Движение тел с постоянным ускорением. Динамический коэффициент. Ударное действие нагрузки

РАЗДЕЛ 35

Концентрация напряжений и её на прочночсть элементов конструкций

РАЗДЕЛ 36

Прочность материалов при циклически менящихся напряжениях. Основные понятия об усталости и характеристики цикла. Кривая усталости. Предел выносливости. Диаграмма предельных амплитуд. Факторы, влияющие на снижение предела выносливости. Коэффициент запаса усталостной прочности

Экзамен