МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы специалитета по специальности

23.05.01 Наземные транспортно-технологические средства,

утвержденной директором академии РУТ (МИИТ) Володиным А.Б.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Сопротивление материалов

Специальность: 23.05.01 Наземные транспортно-

технологические средства

Специализация: Подъемно-транспортные машины и

оборудование морских и речных портов

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

D подписи: 999267

Подписал: заведующий кафедрой Якунчиков Владимир

Владимирович

Дата: 01.06.2021

1. Общие сведения о дисциплине (модуле).

Дисциплина относится к базовой части и обеспечивает логическую связь, во-первых, между физикой и математикой, применяя математический аппарат к описанию и изучению физических явлений в материалах, и, во-вторых, между естественнонаучными дисциплинами и профессиональными дисциплинами.

Требования к входным занятиям, умению и компетенции студентов:

Студент должен:

Знать: физические основы механики; элементы векторной и линейной алгебры, аналитической геометрии, основы дифференциального и интегрального исчисления; основы теоретической механики;

Уметь: применять полученные знания математики к решению задач сопротивления материалов;

Владеть: навыками работы с учебной литературой, электронными базами данных; навыками решения задач линейной и векторной алгебры, дифференциального и интегрального исчислений.

На материале курса базируются такие важные для общего инженерного образования дисциплины, как «Системы автоматизированного проектирования», «Робототехника», а также разделы дисциплин, посвященных разработке методов расчета, проектирования и эксплуатации оборудования.

2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

УК-1 - Способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать

Основные законы и методики расчетов сопротивления материалов

Уметь

Применять основные законы и методики расчетов сопротивления материалов

Владеть

Основными законами и методиками расчетов сопротивления материалов

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 8 зачетных единиц (288 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

		Количество часов		
Тип учебных занятий	Всего	Семестр		
		№4	№5	
Контактная работа при проведении учебных занятий (всего):	132	68	64	
В том числе:				
Занятия лекционного типа		34	32	
Занятия семинарского типа	66	34	32	

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 156 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

$N_{\underline{0}}$	Тематика лекционных занятий / краткое содержание			
Π/Π	темитики лекционных запятии / криткое содержание			
1	Гематика лекций			
	Общие положения. Растяжение и сжатие. Сопротивление материалов. Цели и задачи дисциплины.			
	Понятие прочности, жесткости и устойчивости. Основные гипотезы о свойствах материала. Общие представления о деформациях. Касательное и нормальное напряжение. Растяжение и сжатие. Напряжения и деформации при растяжении — сжатии. Закон Гука. Модуль упругости первого рода, коэффициент Пуассона. Условия прочности. Определение перемещений сечений. Статически неопределимые задачи. Диаграмма растяжения, сжатия малоуглеродистой стали.			
	Механические характеристики материалов. Выбор предельного состояния. Коэффициент запаса.			
	Геометрические характеристики плоских сечений. Сдвиг Геометрические характеристики плоских			
	сечений. Статический момент площади сечения. Осевой и полярный моменты инерции. Моменты			
	инерции при параллельном переносе осей. Главные оси и главные моменты инерции. Момент			
	сопротивления, радиус инерции.			
	Чистый сдвиг. Закон Гука для сдвига, модуль упругости второго рода. Расчет заклепочных и сварных соединений.			
	Кручение. Кручение прямого стержня. Построение эпюр крутящих моментов. Распределение			
	касательных напряжений по поперечному сечению. Определение деформаций. Условия прочности и			
	жесткости при кручении.			
	Напряженное и деформированное состояние в точке тела. Теории прочности. Виды напряженного			
	состояния (одноосное, плоское, объемное напряженное состояние). Главные напряжения и главные			
	площадки. Индексация главных напряжений.			
	Понятие о деформированном состоянии в точке тела. Обобщенный закон Гука. Понятие о теориях			
	прочности.			
	Прямой поперечный изгиб.			
	Косой изгиб. Общее понятия о деформации изгиба. Чистый изгиб. Построение эпюр изгибающих			
	моментов и поперечных сил. Дифференциальные зависимости при изгибе. Определение нормальных			
	напряжений при чистом изгибе. Условие прочности по нормальным напряжениям. Расчет касательных			
	напряжений. Распределение нормальных и касательных напряжений на примере двутаврового сечения. Рациональные формы сечений.			
	Косой изгиб. Внецентренное растяжение- сжатие, изгиб с кручением, кручение с растяжением-			
	сжатием. Общий случай сложного сопротивления.			
	Теоремы о взаимности работ и перемещений. Интеграл Мора. Способ Верещагина.			
	Расчет статически неопределимых систем методом сил. Сложное сопротивление. Расчет простейших			
	статически неопределимых систем методом сыл. Сложное сопротивление. Тас ют простеиших			
	эпюр внутренних силовых факторов в плоских и пространственных стержневых системах. Сложное			
	сопротивление.			
	Продольный и поперечный изгиб. Устойчивость сжатых стержней. Критическая сила. Формула			
	Эйлера. Условия применимости формулы Эйлера. Практические методы расчета на устойчивость.			
	Понятие о продольно-поперечном изгибе.			
	Расчеты на выносливость и динамические расчеты. Усталость металлов. Предел выносливости.			
	Диаграмма предельных амплитуд. Факторы, влияющие на предел выносливости. Расчеты на			
	прочность при напряжениях, циклически меняющихся во времени. Коэффициенты запаса.			
	Колебания упругих систем. Расчет элементов, движущихся с ускорением. Виды удара. Основные допущения технической теории удара. Условия прочности при ударе.			
	Расчеты по предельным нагрузкам. Расчет элементов по предельным нагрузкам.			

4.2. Занятия семинарского типа.

Практические занятия

№ п/п	Тематика практических занятий/краткое содержание			
1	Тематика практических занятий			
	Статически определимые задачи на растяжение-сжатие. Определение продольных сил, нормальных			
	напряжений. Расчет на прочность и жесткость. Статически неопределимые задачи на растяжениесжатие. Температурные деформации.			
	Решение задач на тему: «Геометрические характеристики плоских сечений. Чистый сдвиг".			
	Статически определимые и статически неопределимые задачи на кручение. Расчет на прочность и			
	жёсткость при кручении.			
	Изгиб. Определение опорных реакций. Построение эпюр внутренних силовых факторов для			
	статически определимых систем. Расчеты на прочность и жесткость при изгибе. Определение			
	перемещений с помощью интеграла Мора. Способ Верещагина.			
	Решение задач на тему: «Исследование напряжённого и деформированного состояния в точке".			
	Статически неопределимые системы при изгибе. Расчёт статически неопределимых рам. Решение			
	задач на тему: «Внецентренное растяжение-сжатие» Решение задач на тему: "Изгиб с кручением"			
	Устойчивость стержневых систем.			
	Расчеты на прочность при циклически изменяющихся напряжениях.			
	Вынужденные колебания системы с одной степенью свободы. Колебания системы с несколькими			
	степенями свободы. Расчеты на ударную нагрузку. Свободные колебания системы с одной степенью			
	свободы.			
	Расчеты по предельным нагрузкам			

Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы	
1	Самостоятельная работа включает подготовку к лекциям и практическим занятиям	
2	Подготовка к промежуточной аттестации.	
3	Подготовка к текущему контролю.	

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Сопротивление материалов В 2 ч. А.Г. Схиртладзе, А.В. Чеканин, В.В. Волков. Учебник КУРС: ИНФРА-М, 2018	https://znanium.com/catalog/product/933939

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Наименование информационного ресурса Ссылка на информационный ресурс

Портал Сопромат.py http://www.soprotmat.ru/

Учебный портал по обучению сопротивлению материалов

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Наименование информационной технологии /программного продукта Назначение

(базы и банки данных,

тестирующие программы, практикум, деловые

игры и т.д.) Тип продукта

(полная лицензионная версия, учебная версия, демоверсия и т.п.)

Операционная система Microsoft Windows 7 Операционная система Полная лицензионная версия

MS Office 2010 (Word, Excel, PowerPoint) Офисный пакет приложений Полная лицензионная версия

Виртуальные лабораторные работы по дисциплине Практикум Полная лицензионная версия

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Наименование

специализированных аудиторий, кабинетов, лабораторий,

тренажеров и пр. Перечень основного оборудования

Учебная аудитория для проведения занятий лекционного и семинарского типов, групповых и индивидуальных консультаций.

Посадочных мест 25. Специализированная мебель

Мобильный комплект для презентаций в составе: проектор EPSON EB-U05 1900x1200, экран со стойкой 2x2 м, ноутбук ACER Intel Celeron N3060

Рабочие места - 1 шт.

Учебная аудитория для проведения занятий лекционного и семинарского типов, групповых и индивидуальных консультаций.

Посадочных мест 14. Специализированная мебель.

Рабочие места в составе: ПК Intel Pentium E6300, монитор Samsung SyncMaster E1920, клавиатура Genius KB-06XE, мышь Genius NerScroll 100X.

Рабочие места - 14 шт.

Учебная аудитория для проведения занятий лекционного и семинарского типов, групповых и индивидуальных консультаций.

Посадочных мест 14. Специализированная мебель.

Рабочие места в составе: ПК Intel Pentium E6300, монитор Samsung SyncMaster E1920, клавиатура Genius KB-06XE, мышь Genius NerScroll 100X. Рабочие места - 14 шт.

9. Форма промежуточной аттестации:

Зачет в 4 семестре.

Экзамен в 5 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы

Заведующий кафедрой, доцент, к.н. кафедры «Портовые подъемнотранспортные машины и робототехника» Академии водного транспорта

. .

Лист согласования

Заведующий кафедрой ППТМиР

Председатель учебно-методической

комиссии

Якунчиков

Владимир

Владимирович

В.В. Якунчиков

А.Б. Володин