МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы специалитета по специальности

23.05.06 Строительство железных дорог, мостов и транспортных тоннелей, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Сопротивление материалов

Специальность: 23.05.06 Строительство железных дорог,

мостов и транспортных тоннелей

Специализация: Цифровое проектирование, строительство и

эксплуатация инфраструктуры высокоскоростных железнодорожных

магистралей

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 78344

Подписал: И.о. заведующего кафедрой Алферов Иван

Валерьевич

Дата: 05.04.2024

1. Общие сведения о дисциплине (модуле).

«Сопротивление материалов» – общетехническая дисциплина, лежащая в основе ряда общетехнических и специальных дисциплин. На материале сопротивления материалов базируются такие общетехнические дисциплины, как «Строительная механика», «Динамика и устойчивость сооружений», «Теория упругости и пластичности», и др. Сюда следует отнести и большое число специальных инженерных дисциплин, связанных с расчетами мостов, тоннелей, железнодорожного пути и других транспортных сооружений. Изучение сопротивления материалов весьма способствует формированию инженерного мышления, позволяющей будущему специалисту научно анализировать проблемы его профессиональной области, использовать на практике приобретённые им базовые знания, самостоятельно, используя современные образовательные и информационные технологии, овладевать той новой информацией, с которой ему придётся столкнуться в производственной и научной деятельности.

Целью освоения сопротивления материалов является изучение поведения стержней при различных видах деформаций, оценивать их надежность и долговечность. На данной основе становится возможным построение и исследование механико-математических моделей, адекватно описывающих работу реальных сооружений. При изучении сопротивления материалов вырабатываются навыки практического использования изучаемых методов.

2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ОПК-1 - Способен решать инженерные задачи в профессиональной деятельности с использованием методов естественных наук, математического анализа и моделирования.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Владеть:

знаниями основных понятий и фундаментальных законов физики.

Знать:

законы механики для выполнения проектирования и расчета транспортных объектов.

Уметь:

опрделять опорные реакции, внутренние усилия, напряжения и перемещения для расчета элементов конструкций на прочность, жесткость и учтойчивость.

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 8 з.е. (288 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

		Количество часов		
Тип учебных занятий	Всего	Семестр		
		№ 3	№4	
Контактная работа при проведении учебных занятий (всего):	176	96	80	
В том числе:				
Занятия лекционного типа	64	32	32	
Занятия семинарского типа	112	64	48	

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 112 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

№ п/п		
11/11	Тематика лекционных занятий / краткое содержание	
	Введение. Роль курса «Сопротивления материалов» в образовании инженера-	
	строителя. Гипотезы и принципы. Виды нагрузок. Расчетные схемы.	
	Напряжения, деформации и перемещения. Внутренние усилия в поперечных	
C	сечениях стержней.	
3 1	Построениие эпюр внутренних усилий. Метод сечений.	
4 1	Растяжение и сжатие стержней. Напряжения, деформации. Закон Гука.	
	Механические свойства материалов. Диаграммы растяжения и сжатия. Расчеты на прочность.	
6 (Статически неопределимые задачи при растяжении-сжатии.	
7	Геометрические характеристики поперечных сечений Статические моменты, центр гяжести. Осевые и центробежные моменты инерции. Моменты инерции простейших фигур.	
	Главные моменты инерции. Вычисление моментов инерции при параллельном переносе и повороте осей.	
9 I	Прямой изгиб. Основные определения и гипотезы. Нормальные напряжения.	
10 I	Рациональные сечения при изгибе. Формула Журавского. Понятие центра изгиба.	
11	Сдвиг и кручение. Понятие о чистом сдвиге. Кручение стержней с круглым	
I	поперечным сечением. Напряжения и перемещения при кручении.	
12	Статически неопределимые задачи при кручении.	
13 l	Напряженное состояние в точке и его виды. Понятие о тензоре напряжений.	
14 l	Напряжения в наклонных площадках при плоском напряженном состоянии.	
	Главные напряжения и определение положния главных Экстремальные касательные напряжения.	
16	Заключительная лекция по 1-ой части курса.	
	Перемещения при изгибе. Определение перемещений при изгибе. Метод непосредственного интегрирования.	
	Формула Максвелла-Мора. Техника вычислений интегрвла Мора.	
19 l	Расчет статически неопределимых систем по методу сил.	
	Сложное сопротивление. Построение эпюр.	
	Сложное сопротивление. Косой изгиб.	
	Сложное сопротивление. Внецентренное растяжение-сжатие. Ядро сечения.	
	Сложное сопротивление. Изгиб с кручением.	
	Определение перемещений при сложном воздействии.	
	Кручение стержней некруглого поперечного сечения. Депланация некруглых сечений	
	при кручении. Понятие о свободном и стесненном кручении. Свободное кручение	
	стержней сплошного прямоугольного сечения.	
	Свободное кручение тонкостенных стержней замкнутого профиля. Формула Бредта.	
	Расчеты на прочность и жесткость.	
27	Геории прочности и пластичности.	

№	Тематика лекционных занятий / краткое содержание		
п/п	темитики лекционных запитии / криткое содержиние		
28	Устойчивость сжатых стержней. Устойчивая и неустойчивая формы равновесия.		
	Понятие о критической силе для сжатых стержней.		
29	Пределы применимости формул Эйлера и Ясинсокого. Практические способы		
	расчета сжатых стержней.		
30	Продольно-поперечный изгиб. Определение напряжений и перемещений.		
31	Динамическое действие нагрузки. Движение тел с постоянным ускорением.		
	Динамический коэффициент. Ударное действие нагрузки.		
32	Определение перемещений и напряжений при ударном действии нагрузки.		
33	Заключительная лекция по 2-ой части курса.		

4.2. Занятия семинарского типа.

Лабораторные работы

№	Науманаранна набаратарни IV работ / кратказ со наржания	
п/п	Наименование лабораторных работ / краткое содержание	
1	Испытание на растяжение и сжатие сталь-ного образца в пределах упругих	
	деформаций.	
2	Изучение диаграмм растяжения малоуглеродистой, легированной стали и чугуна.	
	Изучение диаграмм сжатия малоуглеродистой стали, чугуна и древесины.	
3	Испытание на срез стали и древесины.	
4	Испытание двутавровой балки на изгиб. Испытание образцов на кручение.	
5	Определение перемещений в балке при изгибе. Опытная проверка значения опорной	
	реакции неразрезной балки.	
6	Испытание балки при косом изгибе. Изучение распределения напряжений в	
	поперечном сечении бруса при внецентренном сжатии.	
7	Испытание тонкостенной трубы на сложное сопротивление.	
8	Исследование явления потери устойчивости сжатого стального стержня в упругой	
	стадии. Исследование работы стержня при продольно-поперечном изгибе.	

Практические занятия

№	Тематика практических занятий/краткое содержание	
Π/Π	тематика практических занятии/краткое содержание	
1	Внутренние усилия в поперечных сечениях стержней. Метод сечений.	
2	Построениие эпюр внутренних усилий (Nz, Mz).	
3	Построениие эпюр внутренних усилий (Мх, Qу).	
4	Построение эпюр внутртенних усилий в составных балках.	
5	Статически неопределимые задачи при растяжении—сжатии.	
6	Геометрические характеристики поперечных сечений Статические моменты, центр	
	тяжести. Осевые и центробежные моменты инерции. Моменты инерции простейших	
	фигур.	
7	Примеры расчета балок по нормальным и касательным напряжениям.	

$N_{\underline{0}}$	Томотумо иномпический раздатуй/инотумо оо монию	
Π/Π	Тематика практических занятий/краткое содержание	
8	Расчет стержней на кручение.	
9	Определение перемещений в балках методом непосредственного интегрирования.	
10	Определение перемещений методом Мора в балках.	
11	Определение перемещений методом Мора в комбинированных систмах.	
12	Расчет статически неопределимых балок по методу сил.	
13	Расчет статически неопределимых комбинированных систем по методу сил.	
14	Построение эпюр внутренних усилий и определение перемещений в	
	пространственном стержне.	
15	Определение положения нулевой линии и построение эпюры нормальных	
	напряжений при косом изгибе и внецентренном сжатии Построение ядра сечения.	
16	Расчет сплошных и тонкостенных стержней на изгиб и кручение. Применение теорий	
	прочности для оценки несущей способности стержней.	
17	Определение критической нагрузки сжатых стержней. Подбор сечений сжатых	
	стержней по СНиП.	
18	Определение напряжений и перемещений при продольно-поперечном изгибе.	
19	Расчет стержней на динамическую нагрузку. Определение напряжений и	
	перемещений при ударе.	

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Построение эпюр внутренних усилий.
2	Расчет стержней на растяжение-сжатие.
3	Расчт стержней на изгиб и кручение.
4	Определение напряжений при изгибе.
5	Расчет статически неопределимых систем.
6	Расчет стержней на сложное сопротивление.
7	Расчет стержней на устойчивость.
8	Продольно-поперечный изгиб.
9	Расчет на ударное действие нагрузки.
10	Подготовка к лабораторным работам.
11	Выполнение расчетно-графической работы.
12	Подготовка к промежуточной аттестации.
13	Подготовка к текущему контролю.

4.4. Примерный перечень тем расчетно-графических работ Построить эпюры внутренних усилий.

Расчет стержней на растяжение-сжатие.

Расчт стержней на изгиб и кручение.

Определенрие напряжений при изгибе. Статически неопределимые системы.

Расчте стержней на сложное сопротивление.

Расчте стержней на устойчивость. Продольно-поперечный изгиб.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Сопротивление материалов Александров А.В., Потапов	НТБ МИИТ
	В.Д., Державин Б.П. Студент, 2012	
1	Сопротивление материалов Лукьянов А.М. ГОУ, 2008	НТБ МИИТ

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

http://library.miit.ru/ - электронно-библиотечная система Научно-технической библиотеки МИИТ http://elibrary.ru/ - научно-электронная библиотека. https://cyberleninka.ru/ - научно-электронная библиотека. https://scholar.google.ru/ - бесплатная поисковая система по полным текстам научных публикаций всех форматов и дисциплин.

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Microsoft Office (Word, Excel)

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

В аудитории должены быть: парты, стулья, стол преподавателя, мел, доска. По возможности в аудитории необходимо иметь проектор с экраном.

9. Форма промежуточной аттестации:

Зачет в 3 семестре.

Экзамен в 4 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, к.н. кафедры «Строительная механика»

И.В. Алферов

Согласовано:

Директор О.Н. Покусаев

и.о. заведующего кафедрой СМ И.В. Алферов

Председатель учебно-методической

комиссии Д.В. Паринов