МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы магистратуры по направлению подготовки 15.04.06 Мехатроника и робототехника, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Специальные разделы математики

Направление подготовки: 15.04.06 Мехатроника и робототехника

Направленность (профиль): Роботы и робототехнические системы

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ) ID подписи: 6216

Подписал: заведующий кафедрой Неклюдов Алексей

Николаевич

Дата: 01.06.2024

1. Общие сведения о дисциплине (модуле).

Целью изучения дисциплины (модуля) является:

- формирование необходимых математических знаний, позволяющих самостоятельно проводить математический анализ прикладных инженерных задач;
- формирование навыков использования математических методов в практической деятельности.

Задачами дисциплины (модуля) являются:

- освоение математических приемов и навыков решения конкретных инженерных задач, ориентированных на практическое применение при изучении специальных дисциплин;
- овладение основными математическими методами, необходимыми для анализа процессов и явлений при поиске оптимальных решений, обработки и анализа результатов экспериментов;
- освоение современных математических методов исследования, основанных на применении компьютерной техники.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-1** Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования в профессиональной деятельности;
- **ОПК-13** Способен использовать основные положения, законы и методы естественных наук и математики при формировании моделей и методов исследования мехатронных и робототехнических систем;
- **ПК-1** Способен составлять математические модели мехатронных и робототехнических систем, их подсистем, включая исполнительные, информационно-сенсорные и управляющие модули, с применением методов формальной логики, методов конечных автоматов, сетей Петри, методов искусственного интеллекта, нечеткой логики, генетических алгоритмов, искусственных нейронных и нейро-нечетких сетей;
- **УК-1** Способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- методику проведения анализа научно-технических задач в области профессиональной деятельности;
- основные понятия и методы линейной алгебры и векторного исчисления, теории матриц и обыкновенных дифференциальных уравнений.

Уметь:

- применять методы математического анализа при решении инженерных задач;
- применять математическую символику для выражения количественных и качественных отношений объектов.

Владеть:

- навыками анализа научно-технических задач в профессиональной деятельности для выбора рационального метода решения;
- навыками использования математического аппарата при решении прикладных задач.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 6 з.е. (216 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
тип учесных занятии		Семестр №1
Контактная работа при проведении учебных занятий (всего):	64	64
В том числе:		
Занятия лекционного типа	32	32
Занятия семинарского типа	32	32

3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 152 академических часа (ов).

- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).

4.1. Занятия лекционного типа.

No	Тематика лекционных занятий / краткое содержание		
п/п			
1	Матрицы и многомерные векторы.		
	Рассматриваемые вопросы:		
	- квадратные и прямоугольные матрицы;		
	- многомерные вектор-строка и вектор-столбец.		
2	Действия над многомерными векторами.		
	Рассматриваемые вопросы:		
	- умножение числа на вектор и алгеброическое сложение векторов;		
	- скалярное произведение двух многомерных векторов;		
	- понятие длины многомерного вектора;		
	- дифференцирование и интегрирование многомерных векторов по скалярному аргументу.		
3	Действия над матрицами.		
	Рассматриваемые вопросы:		
	- сложение и вычитание матриц;		
	- скалярное произведение матриц;		
	- транспонирование матриц;		
	- понятие об особенных матрицах;		
	- определение обратной матрицы;		
	- дифференцирование и интегрирование матриц по скалярному аргументу;		
	- норма матрицы;		
	- некоторые понятия из рядов матриц;		
	- понятие о положительно определенных матрицах.		
4	Конечные алгебраические уравнения и методы их решения.		
	Рассматриваемые вопросы:		
	- решение конечных уравнений с помощью матрицы якобиан;		
	- точные (прямые) и приближенные методы решения конечных уравнений;		
5	Точные методы решения линейных уравнений.		
	Рассматриваемые вопросы:		
	- решение линейной системы умножением на обратную матрицу;		
	- метод решения, основанный на обыкновенных жордановых исключениях;		
	- метод Гаусса.		
6	Определение собственных чисел матриц.		
	Рассматриваемые вопросы:		
	- определение собственных чисел методом остатков;		
	- метод Стодола для определения максимального собственного числа.		

No		
п/п	Тематика лекционных занятий / краткое содержание	
7	Итерационные методы решения линейных уравнений.	
	Рассматриваемые вопросы:	
	- метод простой итерации;	
	- метод Некрасова;	
	- метод скорейшего спуска;	
	- метод Хоттелинга.	
8	Решение линейных уравнений методами минимизации.	
	Рассматриваемые вопросы:	
	- метод минимизации суммы квадратов уклонений (невязок);	
	- метод минимизации суммы модулей уклонений;	
0	- метод минимизации модуля максимального уклонения.	
9	Методы решения специальных и больших систем уравнений.	
	Рассматриваемые вопросы:	
	- методы решения переопределенных (несовместных) и недоопределенных систем уравнений; - методы решения уравнений с ленточной структурой;	
	- методы, связанные с разбиением систем уравнений на ряд подсистем.	
10	Решение нелинейных уравнений.	
10	Рассматриваемые вопросы:	
	- итерационные методы;	
	- методы минимизации.	
11	Дифференциальные уравнения.	
11	Рассматриваемые вопросы:	
	- дифференциальные уравнения с постоянными и переменными коэффициентами;	
	- прямые методы решения дифференциальных уравнений и методы, используещие интегральные	
	преобразования.	
12		
	коэффициентами.	
	Рассматриваемые вопросы:	
	- составление характеристического уравнения;	
	- определение частного и общего решений;	
	- определение постоянных интегрирования из заданных краевых (граничных) или начальных условий.	
13	Классический метод решения системы дифференциальных уравнений первого	
	порядка с постоянными коэффициентами.	
	Рассматриваемые вопросы:	
	- задача Коши (задача с заданными начальными значениями компонент) и граничные задачи;	
	- определение частного и общего решений уравнений без правых частей;	
	- определение общего решения уравнений без правой части;	
	- определение постоянных интегрирования из заданных краевых (граничных) или начальных условий.	
14	Методы, основанные на аппроксимации решений дифференциальных уравнений	
	функциями, удовлетворяющими краевым условиям.	
	Рассматриваемые вопросы:	
	- метод коллокаций;	
	- метод подобластей;	
	- метод наименьших квадратов (интегральный и точечный);	
1.5	- метод Бубнова-Галеркина.	
15	Метод конечных разностей (метод сеток).	
	Рассматриваемые вопросы:	
	- составление сеточных уравнений;	
	- решение сеточных уравнений.	

№ п/п	Тематика лекционных занятий / краткое содержание
16	Основные понятия векторного исчисления.
	Рассматриваемые вопросы:
	- обозначение и типы векторов;
	- задание вектора;
	- равенство векторов;
	- понятие об орте.

4.2. Занятия семинарского типа.

Практические занятия

No		
п/п	Тематика практических занятий/краткое содержание	
1	Решение систем линейных алгебраических уравнений точными методами.	
	В результате работы на практическом занятии студент получает навыки:	
	- решения систем линейных алгебраических уравнений методом жордановский исключений и методом	
	Гаусса;	
	- практической оценки фактической погрешности решения систем линейных алгеброических	
	уравнений.	
2	Решение систем линейных алгебраических уравнений приближенными методами.	
	В результате работы на практическом занятии студент получает навыки:	
	- решения систем линейных алгебраических уравнений итерационными методами и методами	
	минимизации;	
	- практической оценки фактической погрешности решения систем линейных алгеброических	
	уравнений.	
3	Решение определенных и недоопределенных систем линейных алгебраических	
	уравнений.	
	В результате работы на практическом занятии студент получает навыки:	
	- решения определенных и недоопределенных систем линейных алгебраических уравнений методом	
	суммы квадратов уклонений;	
	- практической оценки фактической погрешности решения систем линейных алгеброических	
4	уравнений.	
4	Решение ленточных и трапецеидальных уравнений.	
	В результате работы на практическом занятии студент получает навыки:	
	- решения ленточных линейных алгебраических уравнений методом определяющих неизвестных;	
	- практической оценки фактической погрешности решения систем линейных алгебраических	
	уравнений.	
5	Решение больших систем уравнений методом разделения матрицы на блоки.	
	В результате работы на практическом занятии студент получает навыки:	
	- решения больших систем линейных алгебраических уравнений методом разделения матрицы на блоки;	
	- практической оценки фактической погрешности решения систем линейных алгебраических	
	уравнений.	
6	Решение систем нелинейных уравнений.	
	В результате работы на практическом занятии студент получает навыки:	
	- решения систем нелинейных алгебраических уравнений методом скорейшего спуска и обратного	
	якобиана;	
	- практической оценки фактической погрешности решения систем нелинейных алгебраических	
	уравнений.	

№	
п/п	Тематика практических занятий/краткое содержание
7	Решение системы дифференциальных уравнений с постоянными коэффициентами
	классическим методом.
	В результате работы на практическом занятии студент получает навыки:
	- решения систем дифференциальных уравнений с постоянными коэффициентами классическим
	методом;
0	- определение постоянных интегрирования из заданных краевых (граничных) или начальных условий.
8	Решение дифференциальных уравнений с постоянными коэффициентами методом
	наименьших квадратов.
	В результате работы на практическом занятии студент получает навыки:
	- решения систем дифференциальных уравнений с постоянными коэффициентами наименьших квадратов;
	- составления уравнений для определение постоянных интегрирования.
9	Применения метода сеток для решения дифференциальных уравнений в частных
_	производных.
	В результате работы на практическом занятии студент получает навыки:
	- решения дифференциальных уравнений в частных производных методом конечных разностей;
	- составления конечно-разностных (сеточных) уравнений для дифференциальных уравнений.
10	Применение операторного метода к решению дифференциальных уравнений.
	В результате работы на практическом занятии студент получает навыки:
	- решения дифференциальных уравнений с постоянными коэффициентами операторным методом;
	- получения операторного изображения исходных дифференциальных уравнений.
11	Решение линейных дифференциальных уравнений с постоянными коэффициентами
	комплексным методом.
	В результате работы на практическом занятии студент получает навыки:
	- решения линейных дифференциальных уравнений с постоянными коэффициентами комплексным
	методом;
12	- получения операторных изображений исходных дифференциальных уравнений.
12	Решение линейных дифференциальных уравнений с переменными коэффициентами
	комплексным методом.
	В результате работы на практическом занятии студент получает навыки: - решения линейных дифференциальных уравнений с переменными коэффициентами комплексным
	методом;
	- получения комплексных изображений исходных дифференциальных уравнений.
13	Интегрирование нелинейных дифференциальных уравнений комплексным методом.
	В результате работы на практическом занятии студент получает навыки:
	- интегрирования нелинейных дифференциальных уравнений комплексным методом;
	- получения комплексных изображений исходных дифференциальных уравнений.
14	Сложные произведения векторов.
	В результате работы на практическом занятии студент получает навык получения произведения
1 ~	четырех и более векторов.
15	Определение производной от вектор-функции по скалярному аргументу.
	В результате работы на практическом занятии студент получает навык получения производной
1.6	вектор-функции.
16	Определение градиента от сложной скалярной функции.
	В результате работы на практическом занятии студент получает навыки: - получения градиента скалярной функции;
	- получения градиента скалярной функции, - применения оператора набла.

4.3. Самостоятельная работа обучающихся.

No	Вид самостоятельной работы
п/п	
1	Изучение дополнительной литературы.
2	Текущая подготовка к практическим занятиям.
3	Выполнение курсовой работы.
4	Подготовка к промежуточной аттестации.
5	Подготовка к текущему контролю.

4.4. Примерный перечень тем курсовых работ

Тема курсовой работы «Собственные значения и собственные векторы матрицы линейного преобразования и их приложения». Курсовая работа состоит из 2-х частей: 1. определить собственные числа и собственные векторы матрицы A; 2. привести квадратичную форму к каноническому виду ортогональным преобразованием, указать ее тип и линейное преобразование, приводящее ее к каноническому виду. Проверка результатов преобразований осуществляется с использованием специального программного обеспечения. Варианты курсовой работы приведены в Приложении 1.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Туганбаев, А. А. Основы высшей математики: учебник / А. А. Туганбаев. — Санкт-Петербург: Лань, 2022. — 496 с. — ISBN 978-5-8114-1189-4.	https://e.lanbook.com/book/210698 (дата обращения: 22.04.2024). – Текст: электронный.
2	Горлач, Б. А. Математический анализ / Б. А. Горлач. – 2-е изд., стер. – Санкт-Петербург: Лань, 2024. – 604 с. – ISBN 978-5-507-49010-3.	https://e.lanbook.com/book/367505(дата обращения: 22.04.2024). – Текст: электронный.
3	Тыртышников, Е. Е. Матричный анализ и линейная алгебра: учебное пособие / Е. Е. Тыртышников. – Москва: ФИЗМАТЛИТ, 2007. – 480 с. – ISBN 978-5-9221-0778-5.	https://e.lanbook.com/book/2352 (дата обращения: 22.04.2024). – Текст: электронный.
4	Демидович, Б. П. Основы вычислительной математики: учебное пособие / Б. П. Демидович, И. А. Марон. — 8-е изд., стер. — Санкт-Петербург: Лань, 2022. — 672 с. — ISBN 978-5-8114-0695-1.	https://e.lanbook.com/book/210674 (дата обращения: 22.04.2024). – Текст: электронный.
5	Демидович, Б. П. Дифференциальные уравнения: учебное пособие для вузов / Б. П. Демидович, В. П. Моденов. – 6-е изд., стер. – Санкт-Петербург: Лань, 2022. – 280 с. – ISBN	https://e.lanbook.com/book/195426 (дата обращения: 22.04.2024). – Текст: электронный.

	978-5-8114-9441-5.	
6	Прохорова, Р. А. Обыкновенные дифференциальные уравнения: учебное пособие / Р. А. Прохорова. – Минск: БГУ, 2017. – 335 с. – ISBN 978-985-566-496-4.	https://e.lanbook.com/book/202064 (дата обращения: 22.04.2024). – Текст: электронный.
7	Гюнтер, Н. М. Курс вариационного исчисления : учебное пособие / Н. М. Гюнтер. — 2-е изд., стер. — Санкт-Петербург : Лань, 2022. — 320 с. — ISBN 978-5-8114-0893-1.	https://e.lanbook.com/book/210236 (дата обращения: 22.04.2024). – Текст: электронный.
8	Позднякова, Т. А. Математика. Интегральное исчисление функций нескольких переменных. Элементы векторного анализа: учебное пособие / Т. А. Позднякова, А. Н. Ботвич. — Красноярск: СФУ, 2018. — 113 с. — ISBN 978-5-7638-3920-3.	https://e.lanbook.com/book/157589 (дата обращения: 22.04.2024). – Текст: электронный.

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (https://www.miit.ru/).

Научно-техническая библиотека РУТ (МИИТ) (http:/library.miit.ru).

Образовательная платформа «Юрайт» (https://urait.ru/).

Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/).

Электронно-библиотечная система ibooks.ru (http://ibooks.ru/).

Электронно-библиотечная система Znanium (http://znanium.ru/).

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Microsoft Internet Explorer (или другой браузер).

Операционная система Microsoft Windows.

Microsoft Office.

MathCAD.

Simulink MatLAB.

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебные аудитории для проведения учебных занятий, оснащенные компьютерной техникой и наборами демонстрационного оборудования.

9. Форма промежуточной аттестации:

Курсовая работа в 1 семестре.

Экзамен в 1 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, к.н. кафедры

«Электроэнергетика транспорта» К.С. Субханвердиев

Согласовано:

Заведующий кафедрой НТТС А.Н. Неклюдов

Председатель учебно-методической

комиссии С.В. Володин