МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 38.03.01 Экономика, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Статистика и анализ данных в Python

Направление подготовки: 38.03.01 Экономика

Направленность (профиль): Экономика и инженерия транспортных

систем

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 164898

Подписал: руководитель образовательной программы

Соловьев Богдан Анатольевич

Дата: 14.05.2025

1. Общие сведения о дисциплине (модуле).

Целями освоения факультативной учебной дисциплины являются формирование у обучающихся профессиональных знаний и навыков в области использования библиотек Python для анализа данных.

Задачами дисциплины явялются:

- Освоение основных концепций и методов анализа данных, включая обработку, визуализацию и моделирование данных.
- Развитие навыков работы с популярными библиотеками Python для анализа данных, такими как Pandas, NumPy, Matplotlib, Seaborn, Scikit-learn и другие.
- Обучение применению методов машинного обучения для решения задач классификации, регрессии и кластеризации данных.
- Приобретение опыта работы с большими данными и оптимизации вычислительных процессов.
- Освоение основ построения интерактивных отчетов и дашбордов для представления результатов анализа.
- Развитие умений интерпретации полученных результатов и формирования рекомендаций на основе данных.
- Изучение принципов работы с внешними источниками данных (API, базы данных) и их интеграция в аналитические процессы.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-2** Способен осуществлять сбор, обработку и статистический анализ данных, необходимых для решения поставленных экономических задач;
- **ОПК-5** Способен использовать современные информационные технологии и программные средства при решении профессиональных задач;
- **ОПК-6** Способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- различные методы чтения, обработки и анализа данных с использованием Python, включая фильтрацию, сортировку, группировку и агрегацию данных
- основные принципы библиотек для работы с данными, основанными на Python, и уметь выбирать подходящий инструмент для конкретной задачи

Уметь:

- проводить визуальный анализ данных с помощью построения графиков и диаграмм, что позволит лучше понять структуру и закономерности данных
- разрабатывать и применять простые модели машинного обучения для решения задач классификации, регрессии и кластеризации

Владеть:

- навыками разделения данных на обучающую и тестовую выборки, оценки качества моделей, настройки параметров и интерпретации результатов
- навыками применения методов визуализации данных для выявления скрытых закономерностей и тенденций в данных.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 3 з.е. (108 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип удобилу рондтуй	Количество часов	
Тип учебных занятий		Семестр №6
Контактная работа при проведении учебных занятий (всего):	52	52
В том числе:		
Занятия семинарского типа	52	52

3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 56 академических часа (ов).

- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

Не предусмотрено учебным планом

4.2. Занятия семинарского типа.

Практические занятия

	практические занятия		
№ π/π	Тематика практических занятий/краткое содержание		
1	NumРу для работы с многомерными массивами		
	Рассматриваемые вопросы:		
	- Создание массивов (np.array, np.zeros, np.ones).		
	- Индексация, срезы и изменение формы массивов.		
	- Векторизованные операции: преимущества перед циклами.		
	- Базовые математические функции (sum, mean, std).		
	- Работа с NaN-значениями: обнаружение и обработка.		
2	Pandas для работы с табличными данными		
	Рассматриваемые вопросы:		
	- Загрузка данных из CSV, Excel и словарей в DataFrame.		
	- Фильтрация строк и столбцов, сортировка по условиям.		
	- Группировка данных (groupby) и агрегация (agg).		
	- Обработка пропусков: удаление, заполнение, интерполяция.		
	- Объединение таблиц: merge, concat, join.		
3	Matplotlib и Seaborn для визуализации данных Рассматриваемые вопросы:		
	- Построение графиков: линейные, столбчатые, круговые.		
	- Настройка осей, заголовков, легенд и цветов.		
	- Визуализация распределений: гистограммы, boxplot, kde-plot.		
	- Тепловые карты (heatmap) и парные графики (pairplot).		
	- Экспорт графиков в PNG, PDF и интерактивные форматы.		
4	Scikit-learn для предварительной обработки и ML		
	Рассматриваемые вопросы:		
	- Нормализация данных (StandardScaler, MinMaxScaler).		
	- Кодирование категориальных признаков (OneHotEncoder).		
	- Разделение данных на обучающую и тестовую выборки.		
	- Обучение модели линейной регрессии и оценка качества.		
	- Визуализация результатов: матрица ошибок, ROC-кривая		

№	Томотнико произвидовних рондтий/краткое со поручание		
Π/Π	Тематика практических занятий/краткое содержание		
5	Устройства памяти и особенности типов данных.		
	Рассматриваемые вопросы:		
	- Знакомство с Python, основные типы данных, операции с ними		
	- IDE		
	- настройка виртуальной среды		
	- request.		
6	Анализ данных и машинное обучение		
	Рассматриваемые вопросы:		
	- предобработка данных: очистка данных, обработка пропусков, нормализация и стандартизация;		
	- основы машинного обучения: обучение с учителем и без учителя;		
	- классификация и кластеризация: алгоритмы k-ближайших соседей (k-NN), деревья решений, метод		
	опорных векторов (SVM);		
	- использование библиотек Scikit-learn для реализации алгоритмов машинного обучения.		
7	Регрессионный Анализ		
	Рассматриваемые вопросы:		
	- введение в регрессионный анализ: линейная регрессия и ее предпосылки;		
	- оценка коэффициентов регрессии: метод наименьших квадратов;		
	- множественная регрессия: добавление нескольких независимых переменных;		
	- использование библиотеки StatsModels для построения и оценки моделей регрессии.		
8	Визуализация данных		
	Рассматриваемые вопросы:		
	- введение в визуализацию данных: важность и цели;		
	- основные библиотеки для визуализации: Matplotlib, Seaborn, Plotly;		
	- создание различных типов графиков: линейные графики, гистограммы, диаграммы рассеяния,		
	тепловые карты;		
	- настройка графиков: добавление заголовков, меток осей, легенд и аннотаций.		

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы	
1	Изучение литературы	
2	Подготовка к практическим занятиям	
3	Подготовка к промежуточной аттестации.	
4	Подготовка к текущему контролю.	

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/ п	Библиографическ ое описание	Место доступа
1	Программировани	НТБ (ЭЭ); НТБ (уч.6)
	е в MS Office	
	Excel на Visual	
	Basic T.H.	

	Глебова, Н.А. Зайцева; МИИТ. Каф. "Путевые, строительные машины и робототехнически е комплексы" Однотомное издание МИИТ, 2007	
2	Бонцанини, М. Анализ социальных медиа на Рутол. Извлекайте и анализируйте данные из всех уголков социальной паутины на Рутол / М. Бонцанини; перевод с английского А. В. Логунова. — Москва: ДМК Пресс, 2018. — 288 с. — ISBN	https://e.lanbook.com/book/108129
3	978-5-97060-574-5 Жуков, Р. А. Язык программировани я Рутноп. Практикум: учебное пособие / Р.А. Жуков. — Москва: ИНФРА-М, 2024. — 216 с. + Доп. материалы [Электронный ресурс]. — (Среднее профессионально е образование) ISBN 978-5-16-015638-5	https://znanium.ru/catalog/document?id=439174&ysclid=lx1ogullfu7640 81385

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Документация библиотеки pandas. https://pandas.pydata.org/docs/

Документация библиотеки matplotlib. https://matplotlib.org/stable/users/index

Документация библиотеки seaborn. https://seaborn.pydata.org/tutorial.html Документация библиотеки pandas_profiling. https://pandas-profiling.github.io/pandas-profiling/docs/master/index.html#pandas-profiling Документация scikit-learn https://scikit-learn.org/stable/user_guide.html Документация библиотеки lime https://github.com/marcotcr/lime

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

PyCharm — интегрированная среда разработки для языка программирования Python, community, версия не ниже 2021.2 https://www.jetbrains.com/ru-ru/pycharm/

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Компьютер преподавателя Компьютеры студентов экран для проектора, маркерная доска, Проектор

9. Форма промежуточной аттестации:

Зачет в 6 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

руководитель образовательной

программы О.Б. Проневич

Согласовано:

Директор Б.В. Игольников

Руководитель образовательной

программы Б.А. Соловьев

Председатель учебно-методической

комиссии Д.В. Паринов