МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы специалитета по специальности 26.05.06 Эксплуатация судовых энергетических установок,

утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Судовые турбомашины

Специальность: 26.05.06 Эксплуатация судовых

энергетических установок

Специализация: Эксплуатация судовых энергетических

установок

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 1093451

Подписал: заведующий кафедрой Зябров Владислав

Александрович

Дата: 29.04.2023

1. Общие сведения о дисциплине (модуле).

Целью преподавания дисциплины «Судовые турбомашины» является подготовка

будущих инженеров-механиков в области рабочих процессов, конструкции, вопросов прочности и надежности лопаточных машин двух типов, - турбин, являющихся тепловыми двигателями, и компрессоров, предназначенных для сжатия рабочего тела.

Задача дисциплины — дать будущим судовым инженерам-механикам знания теории рабочих процессов турбомашин, их конструкции и основ грамотной и безопасной эксплуатации, необходимые для практической работы в области эксплуатации, как судовых дизельных энергетических установок, так и судовых ядерных энергетических установок.

2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-2** Способен применять естественнонаучные и общеинженерные знания, аналитические методы в профессиональной деятельности;
- **ОПК-3** Способен проводить измерения и наблюдения, обрабатывать и представлять экспериментальные данные;
- **ПК-5** Способен выполнять безопасные и аварийные процедуры эксплуатации механизмов двигательной установки, включая системы управления;
- **ПК-6** Способен осуществлять подготовку, эксплуатацию, обнаружение неисправностей и меры, необходимые для предотвращения причинения повреждений следующим механизмам и системам управления: 1.главный двигатель и связанные с ним вспомогательные механизмы; 2. паровой котел и связанные с ним вспомогательные механизмы и паровые системы; 3. вспомогательные первичные двигатели и связанные с ними системы; 4. другие вспомогательные механизмы, включая системы охлаждения, кондиционирования воздуха и вентиляции;
- **УК-2** Способен управлять проектом на всех этапах его жизненного цикла.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Уметь:

применять основные законы естественнонаучных дисциплин, связанные в профессиональной деятельности;

обрабатывать экспериментальные данные, интерпретировать и профессионально представлять полученные результаты;

идентифицировать ситуации, требующие применения аварийной процедуры эксплуатации двигательной установки;

Знать:

основные законы естественнонаучных дисциплин, связанные с профессиональной деятельностью;

способы измерений, записи и хранения результатов наблюдений, методы обработки и представления экспериментальных данных;

принципы безопасных процедур эксплуатации механизмов двигательной установки и систем управления ею;

правила безопасной эксплуатации двигательной установки и систем ее управления;

правила эксплуатации двигательной установки в аварийных ситуациях;

правила осуществления подготовки к эксплуатации и эксплуатации главного двигателя и связанных с ним вспомогательных систем;

правила и обладает навыками осуществления подготовки к эксплуатации и эксплуатации парового котла и связанны с ним вспомогательных механизмов и паровых систем;

правила осуществления подготовки к эксплуатации и эксплуатации вспомогательных первичных двигателей и связанных с ними систем;

правила осуществления подготовки и эксплуатации систем управления вспомогательными механизмам, включая системы охлаждения, кондиционирования воздуха и вентиляции;

правила для предотвращения причинения повреждений системам управления и механизмам, включая:

- 1. Главный двигатель и связанные с ним вспомогательные механизмы;
- 2. Паровой котел и связанные с ним вспомогательные механизмы и паровые системы;
 - 3. Вспомогательные первичные двигатели и связанные с ними системы;
- 4. Другие вспомогательные механизмы, включая системы охлаждения, кондиционирования воздуха и вентиляции;

Владеть:

навыками применения основных законов естественнонаучных дисциплин, связанные в профессиональной деятельности;

навыками работы с измерительными приборами и инструментами;

навыками эксплуатации двигательной установки в аварийных ситуациях; навыками осуществления подготовки к эксплуатации и эксплуатации главного двигателя и связанных с ним вспомогательных систем;

навыками осуществления подготовки к эксплуатации и эксплуатации парового котла и связанны с ним вспомогательных механизмов и паровых систем;

навыками осуществления подготовки к эксплуатации и эксплуатации вспомогательных первичных двигателей и связанных с ними систем;

навыками осуществления подготовки и эксплуатации систем управления вспомогательными механизмам, включая системы охлаждения, кондиционирования воздуха и вентиляции;

навыками идентифицировать неисправности в системах управления и механизмах, включая:

- 1. Главный двигатель и связанные с ним вспомогательные механизмы;
- 2. Паровой котел и связанные с ним вспомогательные механизмы и паровые системы;
 - 3. Вспомогательные первичные двигатели и связанные с ними системы;
- 4. Другие вспомогательные механизмы, включая системы охлаждения, кондиционирования воздуха и вентиляции;

навыками принимать меры для предотвращения причинения повреждений системам управления и механизмам, включая:

- 1. Главный двигатель и связанные с ним вспомогательные механизмы;
- 2. Паровой котел и связанные с ним вспомогательные механизмы и паровые системы;
 - 3. Вспомогательные первичные двигатели и связанные с ними системы;
- 4. Другие вспомогательные механизмы, включая системы охлаждения, кондиционирования воздуха и вентиляции;

навыками формулировать в рамках поставленной цели проекта совокупность задач, обеспечивающих ее достижение;

навыками выбирать оптимальный способ решения задач, учитывая действующие правовые нормы и известные условия, ресурсы и ограничения;

навыками публично представляет результаты решения конкретной задачи проекта;

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 6 з.е. (216 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

		Количество часов		
Тип учебных занятий	Всего	Семестр		
		№8	№9	
Контактная работа при проведении учебных занятий (всего):	96	32	64	
В том числе:				
Занятия лекционного типа	42	16	26	
Занятия семинарского типа	54	16	38	

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 120 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

№	Тематика лекционных занятий / краткое содержание		
п/п			
1	Общие сведения о турбинных установках		
	Рассматриваемые вопросы:		
	Предмет дисциплины и методика её изучения. Место турбомашин в судовой энергетике. Краткий		
	очерк развития турбомашин. Принцип действия и устройство турбинных ступеней осевого типа –		
	активный и реактивный. Понятие о степени реактивности турбинной ступени, об устройстве и		
	принципе действия турбинной ступени радиального типа. Турбины со ступенями скорости и турбины		
	со ступенями давления область их применения. Классификация судовых турбин		
2	Теория турбинной ступени		
	Рассматриваемые вопросы:		
	Основы управления газового потока. Тепловой процесс турбинной ступени. Располагаемая работа		
	ступени. Потери на окружности колеса турбинной ступени. Окружной КПД. Дополнительные		

Ma	
No	Тематика лекционных занятий / краткое содержание
п/п	1 / 1
	внутренние потери. Внутренняя работа. Внутренний КПД. Внешние потери в турбинах.
	Механический и эффективный КПД эффективная мощность. Схемы осевой компрессорной ступени.
	Теоретический и полезный напоры. Степень реактивности. Изоэнтропийный КПД.
3	Устройство судовых паровых турбин.
	Рассматриваемые вопросы:
	Устройство судовых главных и вспомогательных паровых турбин. Детали турбин: направляющие
	(сопла) и рабочие лопатки, роторы, корпусы, уплотнения, подшипники, конденсаторы,
	валоповоротное устройство, зубчатые передачи и соединительные муфты; органы управления.
4	Системы паротурбинных установок
	Рассматриваемые вопросы:
	Способы регулирования мощности паровых турбин.
	Системы, обслуживающие турбомашины:
	- система смазки ГТЗА
	- конденсационная установка
	- конденсатно-питательная система
	- система поддержания вакуума в главном конденсаторе
	- система уплотнений турбин и отсоса пара из уплотнений
	- паровые системы паротурбинной установки
	- система регулирования, управления и защиты ГТЗА
5	Газотурбинные двигатели и установки.
	Рассматриваемые вопросы:
	Типы элементов ГТД
	Классификация газотурбинных двигателей. Основные понятия и определения газотурбинных
	двигателей. Общее устройство и принцип действия газотурбинного двигателя и его составных частей:
	компрессоры ГТД, камеры сгорания ГТД, газовые турбины, теплообменные аппараты
6	Термодинамические цикли и структурные схемы газотурбинных двигателей
	Рассматриваемые вопросы:
	Идеальный термодинамический цикл ГТУ. Работа и КПД цикла ГТУ. Потери энергии в газотурбинной
	установке. Тепловой баланс камеры сгорания. Мощность и КПД ГТД. Способы повышения
	экономичности ГТУ
	- регенерация теплоты в цикле ГТУ
	- ступенчатое сжатие с промежуточным охлаждением воздуха (ПОВ)
	- промежуточный подогрев газа в цикле ГТУ (ППГ)
	- разделение приводов движителя и компрессора.
	- Парогазовые установки
	- ГТУ замкнутого и полузамкнутого циклов
	- ГТУ со СПГГ
	- ДВС с газотурбинным надувом
	Конструктивные схемы двухвальных ГТУ
7	Системы газотурбинных установок
	Рассматриваемые вопросы:
	Системы газотурбинных установок
	- топливная система
	- система пуска
	- система смазки
	- система суфлирования
	- система реверса
	- системы охлаждения конструктивных узлов ГТУ
	- система регулирования, управления и защиты ГТД
	- воздухоприемные и газовыхлопные устройства

№ п/п	Тематика лекционных занятий / краткое содержание	
8	Характеристики ГТД	
	Рассматриваемые вопросы:	
	Основные характеристики ГТУ. Схема центробежной компрессорной ступени. Потребляемая	
	мощность, теоретический и полезный напоры, изоэнтропный и полезный КПД. Движение воздуха в	
	рабочем колесе, щелевом, лопаточном диффузорах, улитке. Неустойчивая работа (помпаж). Причины	
	и меры устранения. Характеристики компрессоров. Сравнительная оценка и область применения.	
	Совместная работа турбины и гребного винта, турбины и электрогенератора, газовой турбины и	
	центробежного компрессора ТК.	

4.2. Занятия семинарского типа.

Практические занятия

№ п/п	Тематика практических занятий/краткое содержание
11/11	
1	Основное назначение и принцип действия судового парового турбоагрегата
	В результате работы на практическом занятии студент изучает основное назначение и принцип
	действия судового парового турбоагрегата
2	Конструкция судовых турбомашин
	В результате работы на практическом занятии студент изучает состав и конструкцию основных
	элементов судовых турбомашин
3	Системы, обслуживающие паротурбинные агрегаты.
	В результате работы на практическом занятии студент изучает системы, обслуживающие
	паротурбинные агрегаты
4	Типы элементов газотурбинного двигателя и особенности их конструкций
	В результате работы на практическом занятии студент изучает типы и конструкцию элементов
	газотурбинного двигателя
5	Структурные схемы газотурбинных двигателей.
	В результате работы на практическом занятии студент изучает структурные схемы газотурбинных
	двигателей.
6	Турбокомпрессор ДВС
	В результате работы на практическом занятии студент выполняет расчет турбокомпрессора ДВС

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Подготовка к практическим занятиям
2	Работа с лекционным материалом, литературой
3	Подготовка к промежуточной аттестации.
4	Подготовка к текущему контролю.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

$N_{\underline{0}}$	Библиографическое описание	Место доступа
---------------------	----------------------------	---------------

п/п		
1	Кузнецов, В. В. Судовые турбомашины. Основы теории судовых турбомашин: учебное пособие / В. В. Кузнецов, Е. В. Польский. — Москва: ИНФРА-М, 2021. —	ЭБС ZNANIUM.COM [https://znanium.com] - URL: https://znanium.com/catalog/product/1134556 – Режим доступа: по подписке.
	176 с. — (Военное образование) ISBN 978-5-16-015859-4 Текст : электронный.	
2	Акладная, Г. С. Судовые турбомашины [Электронный ресурс]: Методические рекомендации / Г. С. Акладная Москва: Альтаир-МГАВТ, 2013 64 с Текст: электронный.	ЭБС ZNANIUM.COM [https://znanium.com] - URL: https://znanium.com/catalog/product/447666
3	Акладная, Г. С. Судовые турбомашины [Электронный ресурс]: Курс лекций / Г. С. Акладная Москва: Альтаир-МГАВТ, 2013 64 с Текст: электронный.	ЭБС ZNANIUM.COM [https://znanium.com] - URL: https://znanium.com/catalog/product/447668
4	Кузнецов, В. В. Основы теории судовых турбомашин: учебное пособие / В.В. Кузнецов. — Москва: ИНФРА-М, 2022. — 176 с. — (Военное образование) ISBN 978-5-16-014946-2 Текст: электронный.	ЭБС ZNANIUM.COM [https://znanium.com] - URL: https://znanium.com/catalog/product/1150287 — Режим доступа: по подписке.
5	Барочкин, Е. В. Общая энергетика: учебное пособие / Е. В. Барочкин, М. Ю. Зорин, А. Е. Барочкин; под. ред. д. т. н., проф. Е. В. Барочкина 3-е изд., перераб. и доп Москва; Вологда: Инфра-Инженерия, 2021 316 с ISBN 978-5-9729-0759-5 Текст: электронный.	ЭБС ZNANIUM.COM [https://znanium.com] - URL: https://znanium.com/catalog/product/1836510 – Режим доступа: по подписке.

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (https://www.miit.ru/);

Официальный сайт Минтранса России (https://mintrans.gov.ru/);

Электронно-библиотечная система "ZNANIUM.COM" https://znanium.com

Справочная правовая система «Консультант Плюс» http://www.consultant.ru

Сайт Научно-технической библиотеки РУТ (МИИТ) http://library.miit.ru Сайт Российской государственной библиотеки http://www.rsl.ru

Международная реферативная база данных научных изданий «Web of science» https://clarivate.com/products/web-of-science/databases/

Сайт Научной электронной библиотеки eLIBRARY.RU http://elibrary.ru

Российский Речной Регистр http://www.rivreg.ru

Сайт Государственной публичной научно-технической библиотеки Poccuu http://www.gpntb.ru

Российский морской регистр судоходства http://www.rs-class.org/ru/

Сайт Всероссийского института научной и технической информации Российской академии наук (ВИНИТИ РАН) http://www.viniti.ru

- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).
- 1. Операционная система Microsoft Windows 7 (Полная лицензионная версия);
- 2. Офисный пакет приложений MS Office 2010 (Word, Excel, PowerPoint) (Полная лицензионная версия);
 - 3. Система автоматизированного проектирования Autocad
 - 4. Система автоматизированного проектирования Компас
- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).
- 1. Учебные аудитории для проведения занятий лекционного типа, оснащенные компьютерной техникой и наборами демонстрационного оборудования.
- 2. Помещения для проведения практических (лабораторных) работ, оснащенные следующим оборудованием: комплекс лабораторных стендов судовых тепловых двигателей, деталей ДВС, вспомогательных механизмов и их элементов, набор контрольно-измерительных приборов.
 - 9. Форма промежуточной аттестации:

Зачет в 8 семестре.

Экзамен в 9 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

старший преподаватель кафедры «Судовые энергетические установки, электрооборудование судов и автоматизация» Академии водного транспорта

Д.А. Попов

Согласовано:

Заведующий кафедрой СЭУ В.А. Зябров

Председатель учебно-методической

комиссии А.А. Гузенко