## МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

## ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

# «РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)



Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 09.03.02 Информационные системы и технологии, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

## РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

#### Схемотехника и электроника

Направление подготовки: 09.03.02 Информационные системы и

технологии

Направленность (профиль): Ил

Информационные системы и технологии на

транспорте

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 4196

Подписал: заведующий кафедрой Желенков Борис

Владимирович

Дата: 02.10.2025

- 1. Общие сведения о дисциплине (модуле).
- 1. Общие сведения о дисциплине (модуле).

Целями освоения учебной дисциплины (модуля) «Схемотехника и электроника» являются:

- формирование компетенции по основным разделам цифровой схемотехники;
- изучение основ синтеза как отдельных элементов, так и вычислительных устройств;
- овладение методами и средствами анализа и разработки аппаратных компонентов вычислительной техники.

Основными задачами дисциплины являются:

- ознакомление с основными принципами схемотехнической реализации цифровых устройств;
  - рассмотрение принципов взаимодействия цифровых схем;
- изучение методов синтеза комбинационных схем на цифровых микросхемах;
- рассмотрение примеров использования ПЛИС для реализации цифровых устройств.
  - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-4** Способен участвовать в разработке технической документации, связанной с профессиональной деятельностью с использованием стандартов, норм и правил;
- **ОПК-7** Способен осуществлять выбор платформ и инструментальных программно-аппаратных средств для реализации информационных систем;.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

#### Знать:

- базовые элементы полупроводниковой электроники и современные элементы архитектуры вычислительных систем и особенности их совместного использования;
- понимать принципы функционирования программно-аппаратного комплекса.

#### Уметь:

- соотнести плюсы и минусы различных элементов цифровых схем;
- анализировать работу цифровых схем при различных входных воздействиях.

#### Владеть:

- -- навыками инсталляции программного;
- навыками инсталляции аппаратного обеспечения для информационных и автоматизированных систем.
  - 3. Объем дисциплины (модуля).
  - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 4 з.е. (144 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

| Тип учебных занятий                                       | Количество часов |            |
|-----------------------------------------------------------|------------------|------------|
| тип учесных занятии                                       |                  | Семестр №4 |
| Контактная работа при проведении учебных занятий (всего): | 64               | 64         |
| В том числе:                                              |                  |            |
| Занятия лекционного типа                                  | 32               | 32         |
| Занятия семинарского типа                                 | 32               | 32         |

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 80 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
  - 4. Содержание дисциплины (модуля).

## 4.1. Занятия лекционного типа.

| No  |                                                                                                                                 |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------|--|--|
| п/п | Тематика лекционных занятий / краткое содержание                                                                                |  |  |
| 1   | ЛОГИЧЕСКИЕ КЛЮЧИ                                                                                                                |  |  |
|     | Тема 1. Электроника цифровых элементов.                                                                                         |  |  |
|     | Рассматриваемые вопросы:                                                                                                        |  |  |
|     | - способы кодирования цифровой информации;                                                                                      |  |  |
|     | - требования к логическим сигналам;                                                                                             |  |  |
|     | - параметры логических элементов.                                                                                               |  |  |
| 2   | ЛОГИЧЕСКИЕ КЛЮЧИ (продолжение)                                                                                                  |  |  |
|     | Тема 2. Транзисторный ключ – основа построения логических схем.                                                                 |  |  |
|     | Рассматриваемые вопросы:                                                                                                        |  |  |
|     | - работа транзисторного ключа;                                                                                                  |  |  |
|     | - методика расчетов значений элементов ключа и получаемых характеристик.                                                        |  |  |
| 3   | КОМБИНАЦИОННЫЕ СХЕМЫ                                                                                                            |  |  |
|     | Тема 3. Простейшие комбинационные схемы.                                                                                        |  |  |
|     | Рассматриваемые вопросы:                                                                                                        |  |  |
|     | - правила оформления принципиальных схем на логических элементах.                                                               |  |  |
| 4   | КОМБИНАЦИОННЫЕ СХЕМЫ (продолжение)                                                                                              |  |  |
|     | Гема 4. Дешифраторы.                                                                                                            |  |  |
|     | Рассматриваемые вопросы:                                                                                                        |  |  |
|     | - принципы построения дешифраторов;                                                                                             |  |  |
|     | - типовые задачи применения.                                                                                                    |  |  |
| 5   | КОМБИНАЦИОННЫЕ СХЕМЫ (продолжение)                                                                                              |  |  |
|     | Тема 5. Мультиплексоры.                                                                                                         |  |  |
|     | Рассматриваемые вопросы:                                                                                                        |  |  |
|     | - принципы построения мультиплексоров;                                                                                          |  |  |
|     | - типовые задачи применения.                                                                                                    |  |  |
| 6   | СХЕМЫ С ПАМЯТЬЮ                                                                                                                 |  |  |
|     | Тема 6. Триггеры RS-типа.                                                                                                       |  |  |
|     | Рассматриваемые вопросы:                                                                                                        |  |  |
|     | - построение асинхронных RS-триггеров на логических элементах ИЛИ-НЕ;                                                           |  |  |
|     | - построение асинхронных RS-триггеров на логических элементах И-НЕ.                                                             |  |  |
| 7   | СХЕМЫ С ПАМЯТЬЮ (продолжение)                                                                                                   |  |  |
|     | Тема 6. Триггеры RS-типа.                                                                                                       |  |  |
|     | Рассматриваемые вопросы:                                                                                                        |  |  |
|     | - построение асинхронных RS-триггеров на логических элементах ИЛИ-НЕ;                                                           |  |  |
| 8   | - построение асинхронных RS-триггеров на логических элементах И-НЕ.                                                             |  |  |
| 0   | СХЕМЫ С ПАМЯТЬЮ (продолжение)                                                                                                   |  |  |
|     | Тема 8. Триггеры D-типа.                                                                                                        |  |  |
|     | Рассматриваемые вопросы: - логическая схема D-триггера;                                                                         |  |  |
|     | - логическая схема Б-триггера, - свойства триггера (прозрачность D-триггера, временные параметры)                               |  |  |
|     | - своиства триггера (прозрачность D-триггера, временные параметры) - исключение прозрачного интервала.                          |  |  |
| 9   | КОМБИНАЦИОННЫЕ СХЕМЫ (продолжение)                                                                                              |  |  |
|     | Тема 9. Двухступенчатые триггеры.                                                                                               |  |  |
|     | Рассматриваемые вопросы:                                                                                                        |  |  |
|     | Рассматриваемые вопросы: - схемотехнические принципы построения схемы с инвертором;                                             |  |  |
|     | - схемотехнические принципы построения схемы с инвертором; - схемотехнические принципы построения схемы с запрещающими связями; |  |  |
| L   |                                                                                                                                 |  |  |

| No  |                                                                                                                                                                 |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| п/п | Тематика лекционных занятий / краткое содержание                                                                                                                |  |  |
|     | - схемотехнические принципы построения схемы с разнополярным управлением;                                                                                       |  |  |
|     | - примеры двухступенчатого D-триггера и двухступенчатого RS-триггера.                                                                                           |  |  |
| 10  | СХЕМЫ С ПАМЯТЬЮ (продолжение)                                                                                                                                   |  |  |
| 10  | Тема 10. Сдвигатели                                                                                                                                             |  |  |
|     | Рассматриваемые вопросы:                                                                                                                                        |  |  |
|     | - понятие сдвига;                                                                                                                                               |  |  |
|     | - виды сдвигов;                                                                                                                                                 |  |  |
|     | - виды сдын об, - применение регистров для выполнения операций сдвигов с использованием мультиплексоров.                                                        |  |  |
| 11  | СХЕМЫ С ПАМЯТЬЮ (продолжение)                                                                                                                                   |  |  |
|     | Тема 11. Сдвигатели                                                                                                                                             |  |  |
|     | Рассматриваемые вопросы:                                                                                                                                        |  |  |
|     | - сдвигатели с использованием двухступенчатых триггеров, динамических триггеров;                                                                                |  |  |
|     | - промышленные сдвигатели 155ИР1, 155ИР13;                                                                                                                      |  |  |
|     | - схемы включения регистров и триггеров для выполнения поразрядных операций (инверсия,                                                                          |  |  |
|     | дизъюнкция, конъюнкция, анализ кода).                                                                                                                           |  |  |
| 12  | СХЕМЫ С ПАМЯТЬЮ (продолжение)                                                                                                                                   |  |  |
|     | Тема 12. Счетные схемы                                                                                                                                          |  |  |
|     | Рассматриваемые вопросы:                                                                                                                                        |  |  |
|     | - описываются принципы построения счетчиков с различной организацией (одноразрядный                                                                             |  |  |
|     | суммирующий счетчик, комбинационный счетчик, инкрементор с последовательным переносом,                                                                          |  |  |
|     | инкрементор с параллельным переносом, инкрементор с групповым переносом, вычитающий                                                                             |  |  |
|     | комбинационный счетчик);                                                                                                                                        |  |  |
|     | - логическая схема построения трехразрядного декрементора с последовательным заемом;                                                                            |  |  |
|     | - принцип функционирования накапливающего счетчика;                                                                                                             |  |  |
|     | - способы организации и функционирование счетных триггеров (Т-триггер, триггер с динамическим входом, построение счетного триггера на RS-триггере, ЈК-триггер). |  |  |
| 13  |                                                                                                                                                                 |  |  |
| 13  | СХЕМЫ С ПАМЯТЬЮ (продолжение)                                                                                                                                   |  |  |
|     | Тема 13 Счетчики                                                                                                                                                |  |  |
|     | Рассматриваемые вопросы: - логические схемы организации счетчиков (счетчик с непосредственными связями, суммирующий,                                            |  |  |
|     | вычитающий, счетчики с переносом, синхронизируемые, несинхронизируемые, каскадирование с                                                                        |  |  |
|     | вычитающии, счетчики с переносом, синхронизируемые, несинхронизируемые, каскадирование с непосредственными связями и с цепями переноса);                        |  |  |
|     | - микросхемы счетчиков 155ИЕ6 и 155ИЕ7;                                                                                                                         |  |  |
|     | - схемы построения и функционирование десятичных счетчиков, счетчиков с переменным модулем                                                                      |  |  |
|     | пересчета и схем измерителей интервалов времени.                                                                                                                |  |  |
| 14  | СУММАТОРЫ                                                                                                                                                       |  |  |
|     | Тема 14. Комбинационные схемы                                                                                                                                   |  |  |
|     | Рассматриваемые вопросы:                                                                                                                                        |  |  |
|     | - принципы построения сумматоров с различной структурной организацией (последовательный                                                                         |  |  |
|     | сумматор, параллельный сумматор, параллельный сумматор с последовательным переносом,                                                                            |  |  |
|     | параллельный сумматор с параллельным переносом, параллельный сумматор с групповым                                                                               |  |  |
|     | переносом, параллельный сумматор со сверхпараллельным переносом).                                                                                               |  |  |
| 15  | СУММАТОРЫ (продолжение)                                                                                                                                         |  |  |
|     | Тема 15. Комбинационные схемы.                                                                                                                                  |  |  |
|     | Рассматриваемые вопросы:                                                                                                                                        |  |  |
|     | - примеры построения схем сумматоров с использованием микросхем ИПЗ и ИП4 (16-ти разрядный                                                                      |  |  |
|     | сумматор с групповым переносом на микросхемах ИПЗ, 16-ти разрядный сумматор со                                                                                  |  |  |
|     | сверхпараллельным переносом на микросхемах ИПЗ и ИП4, 64-х разрядный сумматор со                                                                                |  |  |
|     | сверхпараллельным переносом на микросхемах ИПЗ и ИП4).                                                                                                          |  |  |

| <b>№</b><br>п/п | Тематика лекционных занятий / краткое содержание                              |  |
|-----------------|-------------------------------------------------------------------------------|--|
| 16              | ШИННЫЕ ФОРМИРОВАТЕЛИ                                                          |  |
|                 | Тема 16. Шинная организация.                                                  |  |
|                 | Рассматриваемые вопросы:                                                      |  |
|                 | - применение схем с тремя состояниями с использованием шинных формирователей; |  |
|                 | - примеры построения адресных селекторов для устройств, подключаемых к шине;  |  |
|                 | - работа многорежимного буферного регистра.                                   |  |

# 4.2. Занятия семинарского типа.

# Лабораторные работы

| No  |                                                                                               |  |  |  |
|-----|-----------------------------------------------------------------------------------------------|--|--|--|
| п/п | Наименование лабораторных работ / краткое содержание                                          |  |  |  |
| 1   | Лабораторная работа №1: Расчет транзисторного ключа                                           |  |  |  |
|     | В результате выполения работы студент знакомится со схемой транзисторного ключа и выполняет   |  |  |  |
|     | анализ заданного ключа.                                                                       |  |  |  |
| 2   | Лабораторная работа №1, продолжение                                                           |  |  |  |
|     | В результате выполения работы студент выполняет расчет транзисторного ключа по заданным       |  |  |  |
|     | параметрам                                                                                    |  |  |  |
| 3   | Лабораторная работа №2:Комбинационные схемы на логических вентилях                            |  |  |  |
|     | В результате выполения работы студент изучает комбинационные схемы и анализирует              |  |  |  |
|     | принципиальную схему для восстановления реализуемой ею БФ.                                    |  |  |  |
| 4   | Лабораторная работа №2, продолжение                                                           |  |  |  |
|     | В результате выполения работы студент изучает комбинационные схемы и строит принципиальную    |  |  |  |
|     | схему для реализации указанной БФ на заданных микросхемах.                                    |  |  |  |
| 5   | Лабораторная работа №3: Комбинационные схемы на дешифраторах                                  |  |  |  |
|     | В результате выполения работы студент изучает дешифраторы и анализирует принципиальную        |  |  |  |
|     | схему для восстановления реализуемой ею БФ.                                                   |  |  |  |
| 6   | Лабораторная работа №3, продолжение                                                           |  |  |  |
|     | В результате выполения работы студент изучает дешифраторы и строит принципиальную схему для   |  |  |  |
|     | реализации указанной БФ на заданных микросхемах.                                              |  |  |  |
| 7   | Лабораторная работа №4: Комбинационные схемы на мультиплексорах                               |  |  |  |
|     | В результате выполения работы студент изучает мультиплексоры и анализирует принципиальную     |  |  |  |
|     | схему для восстановления реализуемой ею БФ.                                                   |  |  |  |
| 8   | Лабораторная работа №4, продолжение                                                           |  |  |  |
|     | В результате выполения работы студент изучает мультиплексоры и строит принципиальную схему    |  |  |  |
|     | для реализации указанной БФ на заданных микросхемах.                                          |  |  |  |
| 9   | Лабораторная работа №5: Одноступенчатые триггеры                                              |  |  |  |
|     | В результате выполения работы студент изучает одноступенчатые триггеры и анализирует          |  |  |  |
|     | заданную триггерную схему для определения параметров управления.                              |  |  |  |
| 10  | Лабораторная работа №5, продолжение                                                           |  |  |  |
|     | В результате выполения работы студент изучает одноступенчатые триггеры, синтезирует           |  |  |  |
|     | триггерную схему по заданным параметрам управления и строит временную диаграмму.              |  |  |  |
| 11  | Лабораторная работа №6: Многоступенчатые триггеры                                             |  |  |  |
|     | В результате выполения работы студент изучает двухступенчатые триггеры триггеры и анализирует |  |  |  |
|     | заданную триггерную схему для определения параметров управления.                              |  |  |  |
| 12  | Лабораторная работа №6, продолжение                                                           |  |  |  |
|     | В результате выполения работы студент изучает двухступенчатые триггеры, синтезирует           |  |  |  |
|     | триггерную схему по заданным параметрам управления и строит временную диаграмму.              |  |  |  |

| No        | Наименование поборатории и работ / краткое сопержание                                          |  |  |
|-----------|------------------------------------------------------------------------------------------------|--|--|
| $\Pi/\Pi$ | Наименование лабораторных работ / краткое содержание                                           |  |  |
| 13        | Лабораторная работа №7: Регистровые схемы                                                      |  |  |
|           | В результате выполения работы студент изучает регистровые схемы и строит принципиальные        |  |  |
|           | схемы преобразователей последовательного кода в параллельный.                                  |  |  |
| 14        | Лабораторная работа №7, продолжение                                                            |  |  |
|           | В результате выполения работы студент изучает регистровые схемы и строит принципиальную        |  |  |
|           | схему регистрового сдвигателя на мультиплексорах.                                              |  |  |
| 15        | Лабораторная работа №8: Счетные схемы                                                          |  |  |
|           | В результате выполения работы студент изучает счетные триггеры, способы их реализации и строит |  |  |
|           | временную диаграмму управления ими в счетном режиме.                                           |  |  |
| 16        | Лабораторная работа №8, продолжение                                                            |  |  |
|           | В результате выполения работы студент строит принципиальную схему и временную диаграмму        |  |  |
|           | для реализации указанного счетчика.                                                            |  |  |

## 4.3. Самостоятельная работа обучающихся.

| №   | Вид самостоятельной работы                             |  |
|-----|--------------------------------------------------------|--|
| п/п |                                                        |  |
| 1   | Работа с лекционным материалом                         |  |
| 2   | Работа с учебной литературой из приведенных источников |  |
| 3   | Подготовка к лабораторным работам                      |  |
| 4   | Подготовка к практическим занятиям                     |  |
| 5   | Подготовка к промежуточной аттестации.                 |  |
| 6   | Подготовка к текущему контролю.                        |  |

# 5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

| <b>№</b><br>п/п | Библиографическое описание                                                                                                                                        | Место доступа                                                                                                                       |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 1               | Параскевов, А. В. Микроэлектроника и схемотехника: учебник / А. В. Параскевов, В. И. Лойко. — Краснодар: КубГАУ, 2019. — 179 с. — ISBN 978-5-907294-27-1.         | Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/254189 (дата обращения: 13.03.2025). |
| 2               | Галочкин, В. А. Схемотехника цифровых устройств. Теория и практика: учебник / В. А. Галочкин Москва; Вологда: Инфра-Инженерия, 2024 168 с ISBN 978-5-9729-2031-0. | Текст: электронный URL: https://znanium.ru/catalog/product/2173589 (дата обращения: 13.03.2025).                                    |
| 3               | Галочкин, В. А. Электроника и схемотехника: учебное пособие / В. А. Галочкин. — Самара: ПГУТИ, 2023 — Часть 2: Схемотехника цифровых                              | URL: https://e.lanbook.com/book/411674 (дата обращения: 13.03.2025). — Режим доступа: для авториз. пользователей.                   |

|   | устройств — 2023. — 227 с. — ISBN 978-5-<br>904029-57-9.                                                                                                      |                                                                                                                  |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| 4 | Никитин, В. А. Схемотехника интегральных схем ТТЛ, ТТЛШ и КМОП: учебное пособие / В. А. Никитин. — Москва: НИЯУ МИФИ, 2010. — 64 с. — ISBN 978-5-7262-1236-4. | URL: https://e.lanbook.com/book/75743 (дата обращения: 13.03.2025). — Режим доступа: для авториз. пользователей. |

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Форум специалистов по информационным технологиям (http://citforum.ru/)

Интернет-университет информационных технологий (http://www.intuit.ru/)

Тематический форум по информационным технологиям (http://habrahabr.ru/)

Электронная библиотека МИИТ (http://library.miit.ru)

Информационного портала Научная электронная библиотека eLIBRARY.RU (www.elibrary.ru)

Электронно-библиотечная система «Лань» (https://e.lanbook.com/)

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

OC Windows,
Microsoft Office,
OC Астра Линукс
OC Linux (Ubuntu),
Foxit Reader/Acrobat Reader,
Интернет-браузер (Yandex и др.)

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебная аудитория для проведения учебных занятий (занятий лекционного типа, лабораторных работ):

- компьютер преподавателя, рабочие станции студентов, мультимедийное оборудование, доска.

Аудитория подключена к сети «Интернет».

9. Форма промежуточной аттестации:

Зачет в 4 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

## Авторы:

старший преподаватель кафедры «Вычислительные системы, сети и информационная безопасность»

доцент, к.н. кафедры «Электрификация и электроснабжение»

Р.М. Нигай

А.В. Абрамов

#### Согласовано:

Заведующий кафедрой ЦТУТП В.Е. Нутович

Заведующий кафедрой ВССиИБ Б.В. Желенков

Председатель учебно-методической

комиссии Н.А. Андриянова