МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 09.03.01 Информатика и вычислительная техника, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Схемотехника памяти

Направление подготовки: 09.03.01 Информатика и вычислительная

техника

Направленность (профиль): Вычислительные системы и сети

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 4196

Подписал: заведующий кафедрой Желенков Борис

Владимирович

Дата: 05.11.2025

1. Общие сведения о дисциплине (модуле).

Целями освоения учебной дисциплины «Схемотехника памяти» являются развитие компетенций в области схемотехники, изучение и освоение схемотехники матричных схем, формирование способности выполнять работы и управлять работами по разработке архитектур и прототипов информационных систем.

В процессе освоения данной дисциплины обучаемый формирует и демонстрирует следующие общепрофессиональные компетенции:

- способность инсталлировать программное и аппаратное обеспечение для информационных и автоматизированных систем
- способность участвовать в настройке и наладке программно-аппаратных комплексов

Дисциплина предназначена для получения знаний для решения следующих профессиональных задач:

производственно-технологическая деятельность

- разработка технических спецификаций на программные компоненты и их взаимодействие
 - разработка тестовых документов, включая план тестирования
- контроль соблюдения регламентов по обеспечению безопасности на уровне БД
- разработка автоматизированных процедур выявления попыток несанкционированного доступа к данным
- разработка архитектуры информационных и автоматизированных систем (ИС)
- разработка прототипов информационных и автоматизированных систем
- разработка баз данных информационных и автоматизированных систем
- коррекция производительности сетевой инфокоммуникационной системы
 - установка специальных средств управления безопасностью
- выполнение регламентных работ по поддержке операционных систем сетевых устройств инфокоммуникационной системы
- восстановление параметров программного обеспечения сетевых устройств
- размещение и соединение элементов электрических схем стандартных ячеек библиотеки

- проверка топологии на соответствия правилам проектирования, генерация файлов для синтеза топологии

организационно-управленческая деятельность

- организация работы коллектива исполнителей, принятие управленческих решений, определение порядка выполнения работ;
- контроль использования сетевых устройств и программного обеспечения
- оценка производительности сетевых устройств и программного обеспечения
- администрирование средств обеспечения безопасности удаленного доступа (операционных систем и специализированных протоколов)

проектная деятельность

- проектирование программного обеспечения
- определение первоначальных требований заказчика к ИС и возможности их реализации в ИС на этапе предконтрактных работ
 - проектирование и дизайн ИС
- планирование восстановления сетевой инфокоммуникационной системы
 - планирование модернизации сетевых устройств
 - разработка драйверов устройств
 - разработка компиляторов, загрузчиков, сборщиков
 - разработка системных утилит
- разработка функциональных тестов и элементов среды верификации моделей интегральной схемы и ее составных блоков
- разработка функциональных тестов для моделей сложнофункциональных блоков (СФ-блоков) и ИС на языках описания и верификации аппаратуры
- разработка тестовых программ или генераторов тестовых программ для модели ИС на языках программирования целевой системы
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-5** Способен инсталлировать программное и аппаратное обеспечение для информационных и автоматизированных систем;
- **ОПК-7** Способен участвовать в настройке и наладке программноаппаратных комплексов.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- Место матричных схем (блоков памяти, аналоговых и комбинированных схем, программируемых логических матриц, базовых матричных кристаллов, БИС/СБИС с программируемой структурой) в архитектуре вычислительных систем.
- Устройство и функционирование блоков памяти в современных вычислительных системах.
- Характеристики матричных схем статических и динамических ОЗУ, ПЗУ, флэш-памяти.
- Принципы построения, параметры и характеристики микросхем памяти, цифровых и цифро-аналоговых элементов ЭВМ.
- Принципы организации и функционирования блоков памяти, аналоговых и комбинированных схем.
- Основные направления научно-технического развития в области схемотехники матричных схем и аналоговой схемотехники.

Уметь:

- Проектировать и проверять (верифицировать) структуру блоков памяти в архитектуре ИС.
- Ставить и решать схемотехнические задачи, связанные с аппаратным обеспечением информационных и автоматизированных систем блоками памяти и аналоговыми и комбинированными схемами.
- Выбирать элементную базу и строить блоки ЗУ из микросхем для наращивания емкости и разрядности.
 - Рассчитывать необходимые параметры для блоков памяти.
- Определять необходимые схемотехнические компоненты блоков памяти, цифровых и комбинированных схем.

Владеть:

- Навыками разработки блоков памяти, используемых в архитектурной спецификации ИС.
- Методами анализа элементной базы аппаратуры информационных систем.
- Методами выбора элементной базы для построения различных архитектур вычислительных средств.
- Терминологией в области схемотехники матричных схем и аналоговой схемотехники.

- Методами проектирования блоков памяти и блоков на основе программируемых логических матриц.
- Методами разработки и анализа алгоритмов тестирования блоков памяти.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 4 з.е. (144 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
	Всего	Семестр №6
Контактная работа при проведении учебных занятий (всего):	64	64
В том числе:		
Занятия лекционного типа	32	32
Занятия семинарского типа	32	32

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 80 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

No				
п/п	Тематика лекционных занятий / краткое содержание			
1	Введение/ Основные понятия			
•	Рассматриваемые вопросы:			
	- Классы и характеристики микросхем памяти.			
	- Производные единицы измерения ёмкости по стандарту МЭК			
2	Элементы оперативных запоминающих устройств (ОЗУ)			
	Рассматриваемые вопросы:			
	- Регистровые ОЗУ (структуры и микросхемы).			
	- Элементы ЗУ на биполярных структурах, п-МОП, КМОП			
	- Динамический ЭП			
3	Организация матричных запоминающих устройств			
	Рассматриваемые вопросы:			
	- Структуры 3M (2D; 3D; 2,5D).			
	- Типовая структура RAM			
4	ОЗУ на биполярных транзисторах			
	Рассматриваемые вопросы:			
	- Параметры микросхем.			
	- Система динамических параметров			
	- Примеры построения запоминающих массивов (3M)			
	- Расчет модуля ЗУ			
5	Статические ОЗУ КМОП			
	Рассматриваемые вопросы:			
	- Параметры микросхем.			
	- Специфика использования.			
	- Квазиэнергонезависимость			
6	Динамические ОЗУ МОП			
	Рассматриваемые вопросы:			
	- Параметры и временные диаграммы на примере микросхем на КМОП.			
	- Построение запоминающих массивов - Регенерация (рефреш). Контроллер динамического			
7	Контроль функционирования ЗУ			
,	Рассматриваемые вопросы:			
	- Принцип функционального контроля.			
	- Принцип функционального контроля. - Линейные тесты.			
	- Квадратичные алгоритмы.			
	- Алгоритмы N3/2.			
	- Контроль времени регенерации.			
	- Тестирование ПЗУ			
8	Постоянные запоминающие устройства (ПЗУ)			
	- Классификация и характеристики.			
	- Элементы памяти масочных, программируемых и репрограммируемых ПЗУ.			
	- Построение ЗМ ПЗУ. Импульсное питание ПЗУ			
9	Флэш-память			
	Рассматриваемые вопросы:			
	- Сопоставление схемотехнических свойств микросхем EPROM, EEPROM и FLASH.			
	- Основные характеристики флэш-памяти.			
	- Типы и принципы функционирования.			
1.0	- Примеры микросхем.			
10	Тенденции развития ЗУ			
	Рассматриваемые вопросы:			

No				
Π/Π	Тематика лекционных занятий / краткое содержание			
	- Динамические ОЗУ повышенного быстродействия.			
	- Организация модулей памяти			
11	Программируемые логические матрицы (ПЛМ)			
	Рассматриваемые вопросы:			
	- ПЛМ типа PAL.			
	- Предварительная дешифрация.			
	- ПЛМ с памятью (PLD).			
	- ПЛМ с переменной конфигурацией			
12	Вазовые матричные кристаллы – БМК (вентильные матрицы с масочным			
	программированием)			
	Рассматриваемые вопросы:			
	- Назначение			
	- Классификация и параметры			
13	БИС/СБИС с программируемой структурой			
	Рассматриваемые вопросы:			
	- Развитие ПЛМ и БМК.			
	- Классификация по типу программируемых элементов.			
	- Репрограммируемые СБИС с триггерной памятью конфигурации.			
	- Программируемые вентильные матрицы (FPGA) – развитие БМК.			
	- Сложные программируемые логические схемы.			
	- Параметры и популярные семейства СБИС программируемой логики			
14	Аналоговая схемотехника			
	Рассматриваемые вопросы:			
	- Классификация аналоговых и комбинированных ИС.			
	- Дифференциальный каскад.			
	- Операционные усилители и их аппаратурные включения (интегратор, дифференциатор, сумматор			
	и др.).			
1.5	- Компараторы			
15	ЦАП и АЦП			
	Рассматриваемые вопросы:			
	- Назначение и временные характеристики.			
	- Классические методы преобразования аналог-код.			
	- Классификация ЦАП Построение ЦАП на базе взвешенных резисторов и цепочки R-2R.			
	- Построение цит на оазе взвешенных резисторов и цепочки к-2к Примеры и основные параметры микросхем ЦАП и АЦП			
16	Аналоговые узлы			
10	Рассматриваемые вопросы:			
	- Коммутаторы аналоговых сигналов			
	- селекторы-мультиплексоры			
	- аналоговые запоминающие устройства			
	- Заключение. Обзор перспектив схемотехники. Прошлое и настоящее МИС и СИС. Система на			
	кристалле. Классификация цифровых ИС с точки зрения методов проектирования			
	1 1 1			

4.2. Занятия семинарского типа.

Лабораторные работы

No				
п/п	Наименование лабораторных работ / краткое содержание			
1				
2	Исследование статического ОЗУ асинхронного типа			
	(нетактируемого)(продолжение)			
	В результате работы осваивается построение блока ОЗУ и временные диаграммы микросхем			
	данного типа			
3	Исследование статического ОЗУ асинхронного типа			
	(нетактируемого)Продолжение.			
	В результате работы осваивается построение блока ОЗУ заданной емкости и разрядности из			
	микросхем данного типа			
4	Исследование статического ОЗУ синхронного типа (тактируемого, ТТЛ-			
	совместимого)			
	В результате работы осваиваются статические и динамические характеристики микросхем данного			
	типа			
5	Исследование статического ОЗУ синхронного типа (тактируемого, ТТЛ-			
	совместимого) Продолжение			
	В результате работы осваиваются статические и динамические характеристики микросхем данного			
	типа			
6	Исследование статического ОЗУ синхронного типа (тактируемого, ТТЛ-			
	совместимого) Продолжение			
	В результате работы осваивается построение блока ОЗУ заданной емкости и разрядности из			
	микросхем данного типа			
7	Исследование динамического ОЗУ			
	В результате работы осваиваются статические и динамические характеристики микросхем данного типа			
8	Исследование динамического ОЗУ. Продолжение			
	В результате работы осваивается построение блока ОЗУ и временные диаграммы микросхем			
	данного типа			
9	Исследование динамического ОЗУ. Продолжение			
	В результате работы осваивается построение блока ОЗУ заданной емкости и разрядности из			
	микросхем данного типа			
10	Построение контроллера динамического ОЗУ			
	В результате работы выполняется построение контроллера из микросхем серии К155 и осваиваются			
	принципы реализации отдельных узлов			
11	Построение контроллера динамического ОЗУ Продолжение			
	В результате работы выполняется построение циклограммы и временных диаграмм работы в			
	режимах записи и считывания			
12	Построение контроллера динамического ОЗУ Продолжение			
	В результате работы выполняется построение временных диаграмм работы в режимах страничной			
12	записи и страничного считывания			
13	Построение контроллера динамического ОЗУ Продолжение			
1 4	В результате работы выполняется построение временных диаграмм работы в режиме регенерации			
14	Построение блока ПЗУ			
1 5	В результате работы осваиваются характеристики микросхем и особенности структуры ПЗУ			
15	Построение блока ПЗУ. Продолжение			
	В результате работы осваиваются особенности построения блока ПЗУ заданной емкости и			
	разрядности			

№ п/п	Наименование лабораторных работ / краткое содержание	
16	Подведение итогов. Сравнение особенностей ЗУ различных типов	
	Сравнение основных динамических параметров статических и динамических ОЗУ. Сравнение	
	результатов расчетов со справочными данными	

4.3. Самостоятельная работа обучающихся.

№	Вид самостоятельной работы	
п/п	Brig camocronicabilon pacorisi	
1	Изучение схемотехники матричных схем (темы 1-8)	
2	Изучение схемотехники матричных схем (темы 9-13)	
3	Изучение аналоговой схемотехники (темы 14-16)	
4	Подготовка к промежуточной аттестации.	
5	Подготовка к текущему контролю.	

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Исследование цифровых схем в лабораторном комплексе с использованием системы NI ELVIS II: учеб. пособие / Е. С. Богодистова, И. С. Долгов, Б. В. Желенков; - М.: МИИТ, 2012 223 с.	https://library.miit.ru/bookscatalog/upos/13-1378.pdf (дата обращения: 15.10.2025)
2	Авдеев В. А. Интерактивный практикум по компьютерной схемотехнике на Delphi: учебное пособие / В. А. Авдеев. – Москва: ДМК Пресс, 2011. – 360 с. – ISBN 978-5-94074-625-6	https://e.lanbook.com/book/899 (дата обращения: 15.10.2025). – Текст электронный.

- 6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).
- Форум специалистов по информационным технологиям http://citforum.ru/
- Тематический форум по информационным технологиям http://habrahabr.ru/
 - http://www.milandr.ru/ (микросхемы памяти, ЦАП и АЦП)
- http://www.osp.ru/ (Издательство «Открытые системы», Новости ИТ-индустрии)

- "Computerworld Россия" (Международный компьютерный новостной журнал)
 - "Мир ПК" (Журнал для пользователей персональных компьютеров)
 - http://www.ixbt.com/ интернет-издание о компьютерной технике
- http://library.miit.ru/ электронно-библиотечная система Научно-технической библиотеки МИИТ
 - https://e.lanbook.com/ ЭБС "Лань", электронный ресурс НТБ МИИТ
 - http://elibrary.ru научная электронная библиотека.
- http://www.intuit.ru/ интернет-университет информационных технологий
- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Microsoft Windows

Microsoft Office

При организации обучения по дисциплине (модулю) с применением электронного обучения и дистанционных образовательных технологий необходим доступ каждого студента к информационным ресурсам — библиотечному фонду Университета, сетевым ресурсам и информационнотелекоммуникационной сети «Интернет».

В случае проведении занятий с применением электронного обучения и дистанционных образовательных технологий может понадобиться наличие следующего программного обеспечения (или их аналогов): ОС Windows, Microsoft Office, Интернет-браузер, Microsoft Teams и т.д.

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебная аудитория для проведения занятий лекционного типа групповых и индивидуальных консультаций

Проектор для вывода изображения на экран для студентов, акустическая система, место для преподавателя, оснащенное компьютером Аудитория подключена к интернету РУТ-МИИТ.

Учебная аудитория для проведения лабораторных работ

- компьютерное оборудование лаборатории «Схемотехника» и вычислительного класса,
- наглядное пособие стенд "Носители информации", включающий носители на твердотельной памяти

Лабораторный комплекс для исследования цифровых схем на базе настольной рабочей станции NI ELVIS II включает комплект виртуальных приборов:

- стабилизированные источники питания цифровых схем,
- регулируемые источники питания для создания статических входных сигналов схем,
- мультиметр для измерения входных и выходных напряжений и токов при измерениях статических параметров и характеристик схем,
 - генератор периодической последовательности импульсов,
- двухканальные осциллографы для наблюдения входных и выходных сигналов микросхем и несложных цифровых устройств,

На базе настольной рабочей станции NI ELVIS II на кафедре разработан (разработка Желенкова Б В, Иванова Д.) и используется виртуальный датчик временных последовательностей, позволяющий создать набор входных сигналов для проверки работоспособности микросхем и несложных цифровых устройств.

9. Форма промежуточной аттестации:

Зачет в 6 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, доцент, к.н. кафедры «Вычислительные системы, сети и информационная безопасность»

Е.С. Богодистова

Согласовано:

Заведующий кафедрой ВССиИБ

Б.В. Желенков

Председатель учебно-методической

комиссии Н.А. Андриянова