МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА (МИИТ)»

СОГЛАСОВАНО:

УТВЕРЖДАЮ:

Выпускающая кафедра ТПС POAT Заведующий кафедрой ТПС POAT Директор РОАТ

В.И. Апатцев

С.А. Синицын

А.С. Космодамианский

29 мая 2018 г.

29 мая 2018 г.

Кафедра «Теоретическая и прикладная механика»

Автор Шумейко Галина Семеновна, к.т.н., доцент

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Теоретическая механика

Специальность: 23.05.03 – Подвижной состав железных дорог

Специализация: Локомотивы

Квалификация выпускника: Инженер путей сообщения

 Форма обучения:
 заочная

 Год начала подготовки
 2018

Одобрено на заседании

Учебно-методической комиссии института

Протокол № 2 22 мая 2018 г.

Председатель учебно-методической

комиссии

С.Н. Климов

Одобрено на заседании кафедры

Протокол № 5 15 мая 2018 г.

Заведующий кафедрой

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 167689

Подписал: Заведующий кафедрой Синицын Сергей

Александрович

Дата: 15.05.2018

Рабочая программа учебной дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

1. ЦЕЛИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целью освоения учебной дисциплины «Теоретическая механика» является формирование у обучающихся компетенций в соответствии с требованиями федерального государственного образовательного стандарта по специальности «23.05.03 Подвижной состав железных дорог» и приобретение ими:

- знаний об основных понятиях и аксиомах статики; способах задания движения точки и твердого тела; законах динамики точки и твердого тела;
- умений по использованию основных законов механики в профессиональной деятельности;
- навыков владения основными законами и методами механики.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Учебная дисциплина "Теоретическая механика" относится к блоку 1 "Дисциплины (модули)" и входит в его базовую часть.

2.1. Наименования предшествующих дисциплин

Для изучения данной дисциплины необходимы следующие знания, умения и навыки, формируемые предшествующими дисциплинами:

2.1.1. Математика:

Знания: фундаментальные понятия и законы математики

Умения: решать системы алгебраических уравнений, вычислять производные и интегралы, решать дифференциальные уравнения

Навыки: владеть основными операционными системами ПК

2.1.2. Начертательная геометрия:

Знания: правила оформления графической и текстовой документации, пользования современными информационными ресурсами.

Умения: составлять техническую документацию, графики работ, планы размещения, технологического оснащения и организации рабочих мест

Навыки: современными прикладными программными средствами, средствами проектирования объектов

2.1.3. Физика:

Знания: фундаментальные понятия и законы классической физики

Умения: применять физические законы для решения конкретных задач

Навыки: выполнение элементарных физических исследований в области профессиональной деятельности

2.2. Наименование последующих дисциплин

Результаты освоения дисциплины используются при изучении последующих учебных дисциплин:

- 2.2.1. Детали машин и основы конструирования
- 2.2.2. Динамика систем
- 2.2.3. Колебательные системы подвижного состава
- 2.2.4. Теория механизмов и машин

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ), СООТНЕСЕННЫЕ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

В результате освоения дисциплины студент должен:

№ п/п	Код и название компетенции	Ожидаемые результаты
1	ОПК-1 способностью применять методы математического анализа и моделирования, теоретического и экспериментального исследования;	Знать и понимать: основные понятия и методы математического анализа Уметь: математически поставить задачу, решить ее и проанализировать полученные результаты Владеть: методами математического анализа и моделирования
2	ОПК-3 способностью приобретать новые математические и естественнонаучные знания, используя современные образовательные и информационные технологии;	Знать и понимать: основные понятия, теоремы и принципы теоретической механики Уметь: применять законы теоретической механики для решения конкретных задач Владеть: владеть основными операционными системами ПК
3	ОПК-7 способностью применять методы расчета и оценки прочности сооружений и конструкций на основе знаний законов статики и динамики твердых тел, исследовать динамику и прочность элементов подвижного состава, оценивать его динамические качества и безопасность.	Знать и понимать: основные понятия и аксиомы статики, уравнения равновесия плоских и пространственных тел, общие теоремы динамики Уметь: применять математические методы анализа, законы механики и вычислительную технику для решения практических задач Владеть: основными законами и методами механики для исследования динамики подвижного состава

4. ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ) В ЗАЧЕТНЫХ ЕДИНИЦАХ И АКАДЕМИЧЕСКИХ ЧАСАХ

4.1. Общая трудоемкость дисциплины составляет:

6 зачетных единиц (216 ак. ч.).

4.2. Распределение объема учебной дисциплины на контактную работу с преподавателем и самостоятельную работу обучающихся

	Количество часов	
Вид учебной работы	Всего по учебному плану	Семестр 2
Контактная работа	25	25,35
Аудиторные занятия (всего):	25	25
В том числе:		
лекции (Л)	12	12
практические (ПЗ) и семинарские (С)	12	12
Контроль самостоятельной работы (КСР)	1	1
Самостоятельная работа (всего)	182	182
Экзамен (при наличии)	9	9
ОБЩАЯ трудоемкость дисциплины, часы:	216	216
ОБЩАЯ трудоемкость дисциплины, зач.ед.:	6.0	6.0
Текущий контроль успеваемости (количество и вид текущего контроля)	KP (1)	KP (1)
Виды промежуточной аттестации (экзамен, зачет)	Экзамен	Экзамен

4.3. Содержание дисциплины (модуля), структурированное по темам (разделам)

			Виды учебной деятельности в часах/ в том числе интерактивной форме				Формы текущего		
№ п/п	Семестр	Тема (раздел) учебной дисциплины	Л	ЛР	ПЗ/ГП	KCP	CP	Всего	контроля успеваемости и промежу- точной аттестации
1	2	3	4	5	6	7	8	9	10
1	2	Раздел 1 Раздел 1. Статика Связи и реакции связей; условия равновесия плоской и пространственной систем сил; теория пар сил	3/0		3/2		47	53/2	, выполнение 1- го раздела курсовой работы
2	2	Раздел 2 Раздел 2. Кинематика Кинематика точки (траектория, скорость, ускорение); поступательное, вращательное и плоскопараллельное движения твердого тела; сложное движение точки	3/0		3/1		40	46/1	, выполнение 2- го раздела курсовой работы
3	2	Раздел 3 Раздел 3. Динамика Дифференциальные уравнения движения точки; общие теоремы динамики точки и тела; принцип Даламбера; общее уравнение динамики; принцип возможных перемещений	6/0		6/3		95	107/3	, выполнение 3- го раздела курсовой работы
4	2	Раздел 4 Допуск к экзамену				1/0		1/0	, защита курсовой работы
5	2	Экзамен						9/0	Экзамен
6	2	Тема 8 Курсовая работа						0/0	КР
7		Экзамен							, экзамен
8		Всего:	12/0		12/6	1/0	182	216/6	

4.4. Лабораторные работы / практические занятия

Лабораторные работы учебным планом не предусмотрены.

Практические занятия предусмотрены в объеме 12 ак. ч.

№ п/п	№ семестра	Тема (раздел) учебной дисциплины	Наименование занятий	Всего ча- сов/ из них часов в интерак- тивной форме
1	2	3	4	5
1	2	Раздел 1. Статика	Равновесие произвольной плоской системы сил; равновесие составной конструкции; равновесие фермы; равновесие пространственной конструкции	3/2
2	2	Раздел 2. Кинематика	Кинематика точки (скорость, ускорение); определение скоростей и ускорений точек при вращательном и плоскопараллельном движениях твердого тела; определение скорости и ускорения точки в сложном движении	3/1
3	2	Раздел 3. Динамика	Первая задача динамики точки; теорема об изменении кинетической энергии системы; теорема об изменении количества движения системы; теорема о движении центра масс; теорема об изменении кинетического момента системы, принцип Даламбера, общее уравнение динамики, принцип возможных перемещений	6/3
	ı	1	ВСЕГО:	12/6

4.5. Примерная тематика курсовых проектов (работ)

Курсовая работа по дисциплине «Теоретическая механика» - это комплексная самостоятельная работа обучающегося. Темой курсовой работы является «Применение законов теоретической механики при исследовании механических систем». Задание на курсовую работу предполагает выполнение 12 задач по 20 вариантам:

- 1. Определение реакций связей произвольной плоской конструкции.
- 2. Определение реакций связей составной конструкции.
- 3. Определение усилий в стержнях плоской фермы.
- 4. Определение реакций связей пространственной конструкции.
- 5. Кинематика точки (уравнение траектории, скорость и ускорение).
- 6. Вращательное движение твердого тела.
- 7. Плоскопараллельное движение (определение скоростей и ускорений точек).
- 8. Сложное движение точки.
- 9. Динамика точки.
- 10. Теорема об изменении кинетической энергии системы.
- 11. Принцип Даламбера.
- 12. Принцип возможных перемещений.

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Образовательные технологии, используемые при обучении по дисциплине " Теоретическая механика", направлены на реализацию компетентностного подхода и широкое использование в учебном процессе активных и интерактивных форм проведения занятий в сочетании с внеаудиторной работой с целью формирования и развития профессиональных навыков студентов.

При выборе образовательных технологий традиционно используется лекционно-семинарско-зачетная система, а также информационно-коммуникационные технологии, исследовательские методы обучения.

Самостоятельная работа студентов организована с использованием традиционных видов работы и интерактивных технологий. К традиционным видам работы относится изучение теоретического материала по учебным пособиям. К интерактивным технологиям - подготовка к текущему контролю и промежуточной аттестации с использованием СДО "Космос", интерактивные консультации в режиме реального времени по специальным технологиям, основанным на коллективных способах самостоятельной работы студентов. Комплексное использование в учебном процессе всех вышеназванных технологий стимулируют личностную, интеллектуальную активность, развивают познавательные процессы, способствуют формированию компетенций, которыми должен обладать будущий выпускник.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

№ п/п	№ семестра	Тема (раздел) учебной дисциплины	Вид самостоятельной работы студента. Перечень учебно-методического обеспечения для самостоятельной работы	Всего часов
1	2	3	4	5
1	2	Раздел 1. Статика	Изучение теоретического материала и решение задач по отдельным темам раздела. Выполнение первого раздела курсовой работы. Подготовка к экзамену. Литература: [1], [2], [3], [5], [6]	47
2	2	Раздел 2. Кинематика	Изучение теоретического материала и решение задач по темам: скорости и ускорения точек тела при поступательном и вращательном движениях; сложение ускорений точки в сложном движении. Выполнение второго раздела курсовой работы. Подготовка к экзамену. Литература: [1], [2], [3], [5], [6]	40
3	2	Раздел 3. Динамика	Изучение теоретического материала и решение задач по темам: вторая задача динамики точки; общие теоремы динамики точки; уравнение Лагранжа 2-го рода; теория удара Выполнение третьего раздела курсовой работы. Подготовка к экзамену. Литература: [1], [2], [4], [5], [6]	95
	1		ВСЕГО:	182

7. ПЕРЕЧЕНЬ ОСНОВНОЙ И ДОПОЛНИТЕЛЬНОЙ ЛИТЕРАТУРЫ, НЕОБХОДИМОЙ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

7.1. Основная литература

№ п/п	Наименование	Автор (ы)	Год и место издания Место доступа	Используется при изучении разделов, номера страниц
1	Краткий курс теоретической механики	Тарг С.М.	2007, Москва: Высшая школа, библиотека РОАТ	Используется при изучении разделов, номера страниц Раздел 1: с. 9-94, Раздел 2: с. 95-179, Раздел 3: с. 263-408
2	Курс теоретической механики	Мещеряков В.Б.	2012, Москва, библиотека РОАТ	Используется при изучении разделов, номера страниц Раздел 1: с. 7-79, Раздел 2: с. 80-131, Раздел 3: с. 151-265

7.2. Дополнительная литература

<u>№</u> п/п	Наименование	Автор (ы)	Год и место издания Место доступа	Используется при изучении разделов, номера страниц
3	Теоретическая механика	Цывильский В.Л.	2008, Москва: Высшая школа, библиотека РОАТ	Используется при изучении разделов, номера страниц Раздел 1: с. 14-82, Раздел 2: с. 80-150
4	Курс теоретической механики	Яблонский А.А., Никифорова В.М.	2010, Москва: Высшая школа, библиотека РОАТ	Используется при изучении разделов, номера страниц Раздел 3: c.321-350
5	Теоретическая механика	Капранов И.В., Шумейко Г.С.	2014, Москва, МГУПС, библиотека РОАТ	Используется при изучении разделов, номера страниц Раздел 1: с. 7-38, Раздел 2: с. 39-74, Раздел 3: с. 75-119
6	Лекции по теоретической механике	Капранов И.В., Дубровин В.С.	2010, Москва: POAT МИИТ, библиотека POAT	Используется при изучении разделов, номера страниц Раздел 1: с. 6-50, Раздел 2: с. 551-81, Раздел 3: с. 93-148

8. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ "ИНТЕРНЕТ", НЕОБХОДИМЫЕ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

- 1.Официальный сайт МИИТ http://miit.ru/
- 2.Электронно-библиотечная система POAT http://lib.rgotups.ru/
- 3.Электронно-библиотечная система научно-технической библиотеки МИИТ http://library.miit.ru/
- 4. Система дистанционного обучения http://www.sdo.roat-rut.ru/
- 5. Официальный сайт библиотеки POAT http://lib.rgotups.ru/
- 6.Электронно0библиотечная система ibooks.ru- http://ibooks.ru/
- 7. Поисковые системы «Яндекс», «Google» для доступа к тематическим информационным ресурсам

9. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Программное обеспечение должно позволять выполнить все предусмотренные учебным планом виды учебной работы по дисциплине «Теоретическая механика»: теоретический курс, практические занятия, задания на курсовую работу, тестовые и экзаменационные вопросы по курсу. Все необходимые для изучения дисциплины учебно-методические материалы размещены на сайте: http://www.sdo.roat-rut.ru/.

- Программное обеспечение для выполнения практических заданий включает в себя прикладное программное обеспечение КОМПАС, а также программные продукты общего применения.
- Программное обеспечение для проведения лекций, демонстрации презентаций и ведения интерактивных занятий: Microsoft Office 2003 и выше.
- Программное обеспечение, необходимое для оформления курсовой работы и иной документации: Microsoft Office 2003 и выше.
- Программное обеспечение для выполнения текущего контроля успеваемости: Браузер Internet Explorer 6.0 и выше.

10. ОПИСАНИЕ МАТЕРИАЛЬНО ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Учебная аудитория должна соответствовать требованиям пожарной безопасности и охраны труда по освещенности, количеству рабочих (посадочных) мест студентов. Рекомендуется наличие в аудитории интерактивной доски, ауди- и видеоаппаратуры для демонстрации слайд-шоу и презентаций, систем климат контроля и кондиционирования воздуха, а также рекомендуется иметь возможность подключения к локальным компьютерным сетям для пользования базами данных, информационно-справочными и поисковыми системами.

Учебные аудитории кафедры оснащены необходимым оборудованием для проведения лекционных и практических занятий по дисциплине "Теоретическая механика" в полном объеме. Освещенность рабочих мест соответствует действующим СНиПам и требованиям пожарной безопасности. Количество посадочных мест соответствует численности учебных групп студентов. Аудитории оснащены ауди- и видеоаппаратурой для демонстрации слайд-шоу и презентаций.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

«Теоретическая механика» относится к базовой части цикла обучения и способствует формированию у обучающихся профессиональных компетенций, знаний, умений и навыков, предусмотренных Федеральным государственным образовательным стандартом по специальности «Подвижной состав железных дорог».

11.1. Порядок освоения учебной дисциплины

Приступая к изучению учебной дисциплины, необходимо внимательно ознакомится со всеми разделами Рабочей программы и составить план работы. Для этого рекомендуется:

- Ознакомиться с расписанием учебных занятий на сайте roat-rut.ru.
- Приобрести или получить в библиотеке (http://lib.rgotups.ru/) рекомендованные в разделе 8 настоящей программы учебники, учебные пособия, справочную литературу и другие методические и информационно-справочные материалы.
- Скачать с сайта системы дистанционного обучения http://www.sdo.roat-rut.ru/ и распечатать: Задания на курсовую работу по дисциплине «Теоретическая механика»; Методические указания по выполнению курсовой работы.
- Произвести анализ и примерную оценку объема и трудоемкости работы по изучению отдельных разделов дисциплины и выполнению курсовой работы. С учетом расписания учебных занятий составить план работы и сроки выполнения его разделов.
- Приступить к освоению разделов учебной дисциплины в соответствии с п. 4.3. Рабочей программы.
- 11.2. Рекомендации по выполнению отдельных разделов Рабочей программы 11.2.1. Аудиторные занятия:
- Лекции дают систематизированные основы научных знаний по изучаемой учебной дисциплине и концентрируют внимание на наиболее важных и проблемных вопросах. Целесообразно вести конспект лекций, быть внимательным и инициативным, активно воспринимать получаемую информацию. Законспектированные темы лекционных занятий необходимо систематизировать по разделам рабочей программы и использовать при подготовке к промежуточной аттестации.
- Практические занятия используют полученные теоретические знания в процессе решения конкретных технических задач и формируют у обучающегося умения и навыки, предусмотренные профессиональными компетенциями. Практические занятия являются обязательным видом аудиторных занятий и проводятся по утвержденному расписанию учебных занятий. Перед началом занятий необходимо ознакомиться с их тематикой (п. 4.4.2.), подобрать и тщательно проработать теоретический материал по теме занятия, (п.п. 8.1 и 8.2). На практическом занятии необходимо иметь при себе Задание на курсовую работу, Методические указания по выполнению курсовой работы, справочные, информационные материалы), необходимые для выполнения задания.
- 11.2.2. Самостоятельная работа наиболее трудоемкая часть учебного процесса. В процессе самостоятельной работы необходимо освоить те темы разделов учебной дисциплины (п. 4.3.), которые не вошли в тематику аудиторных занятий. Наиболее эффективным методом освоения учебной дисциплины является конспектирование изучаемых тем разделов учебной дисциплины с последующим самоконтролем результатов освоения. Самоконтроль результатов освоения разделов учебной дисциплины рекомендуется проводить с использованием контрольных вопросов, (ФОС дисциплины), а также решением типовых задач и примеров, приведенных в литературных источниках и методических пособиях.
- 11.2.3. Курсовая работа является завершающим этапом освоения учебной дисциплины. В процессе её выполнения студент демонстрирует способность применять полученные знания, умения и навыки для оптимального решения поставленных задач. Курсовая работа выполняется в соответствии с «Методическими указаниями по выполнению курсовой работы», с использованием рекомендованных литературных источников (раздел 7). Вариант исходных данных выбирается по рекомендациям, приведенным в Задании на курсовую работу. Задания на курсовую работу и методические указания по её

выполнению размещены на сайте системы дистанционного обучения http://www.sdo.roat-rut.ru/. Графическая часть курсовой работы выполняется на отдельных листах рекомендованного заданием формата. Рекомендуется применение прикладных программных средств для выполнения расчетно-аналитических разделов (Matcad, Excel и др.), а для графических разделов — Автокад, Компас и др. Выполненная курсовая работа рецензируется преподавателем. Рецензия прилагается к курсовой работе и является основанием для допуска курсовой работы к защите. Защита курсовой работы проводится в устной форме и состоит из ответов на вопросы по существу выполненной работы. По результатам выполнения и защиты курсовой работы выставляется оценка: «отлично», "хорошо" или «удовлетворительно» (ФОС дисциплины).

11.3. Требования к уровню освоения учебной дисциплины и формированию профессиональных компетенций.

Уровень освоения учебной дисциплины и формирования профессиональных компетенций осуществляется с помощью текущего контроля успеваемости и промежуточной аттестации (ФОС дисциплины).

Текущий контроль успеваемости осуществляется в процессе практических занятий, а также при рецензировании и защите курсовой работы. В процессе её защиты оцениваются знания, умения и навыки, достигнутые в результате процесса обучения.

Промежуточная аттестация проводится в форме экзамена. Экзамен представляет собой заключительный этап контроля освоения учебного материала и формирования профессиональных компетенций, предусмотренных образовательным стандартом при изучении дисциплины «Теоретическая механика». При подготовке к экзамену рекомендуется использовать контрольные вопросы.