МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА (МИИТ)»

СОГЛАСОВАНО:

УТВЕРЖДАЮ:

Выпускающая кафедра ЭЖД РОАТ Заведующий кафедрой ЭЖД РОАТ

Директор РОАТ

Г.М. Биленко

В.И. Апатцев

С.А. Синицын

22 мая 2018 г.

29 мая 2018 г.

Кафедра

«Теоретическая и прикладная механика»

Автор

Шумейко Галина Семеновна, к.т.н., доцент

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Теоретическая механика

Специальность: 23.05.04 – Эксплуатация железных дорог

Грузовая и коммерческая работа Специализация:

Инженер путей сообщения Квалификация выпускника:

Форма обучения: заочная

Год начала подготовки 2018

Одобрено на заседании

Учебно-методической комиссии института

Протокол № 2 22 мая 2018 г.

Председатель учебно-методической

комиссии

x ven

С.Н. Климов

Одобрено на заседании кафедры

Протокол № 5 15 мая 2018 г.

Заведующий кафедрой

Простая электронная подпись, выданная РУТ (МИИТ)

Рабочая программа учебной дисциплины (модуля) в виде электронного документа выгружена из единой

корпоративной информационной системы управления университетом и соответствует оригиналу

ID подписи: 167689

Подписал: Заведующий кафедрой Синицын Сергей

Александрович

Дата: 15.05.2018

1. ЦЕЛИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целью освоения учебной дисциплины «Теоретическая механика» является формирование у обучающихся компетенций в соответствии с федеральным государственным образовательным стандартом по специальности 23.05.04 «Эксплуатация железных дорог» и приобретение ими:

- знаний об основных понятиях, законах и принципах теоретической механики;
- умений применения математических методов для решения практических задач;
- навыков владения основными законами и методами механики.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Учебная дисциплина "Теоретическая механика" относится к блоку 1 "Дисциплины (модули)" и входит в его базовую часть.

2.1. Наименования предшествующих дисциплин

Для изучения данной дисциплины необходимы следующие знания, умения и навыки, формируемые предшествующими дисциплинами:

2.1.1. Инженерная и компьютерная графика:

Знания: правила оформления графической и текстовой документации, пользования современными информационными ресурсами.

Умения: составлять техническую документацию, графики работ, планы размещения, технологического оснащения и организации рабочих мест

Навыки: современными прикладными программными средствами, средствами проектирования объектов

2.1.2. Математика:

Знания: фундаментальные понятия и законы математики

Умения: решать системы алгебраических уравнений, вычислять производные и интегралы, решать дифференциальные уравнения

Навыки: владеть основными математическими методами и современными образовательными и информационными технологиями.

2.2. Наименование последующих дисциплин

Результаты освоения дисциплины используются при изучении последующих учебных дисциплин:

2.2.1. Тяга поездов

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ), СООТНЕСЕННЫЕ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

В результате освоения дисциплины студент должен:

№	Код и название компетенции	Ожидаемые результаты
п/п 1	ОПК-1 способностью применять методы математического анализа и моделирования, теоретического и экспериментального исследования;	Знать и понимать: методы теоретического и экспериментального исследования механических систем и устройств Уметь: применять математические модели механических систем для выполнения инженерных расчетов. Владеть: типовыми методами математического анализа для проведения теоретического и экспериментального исследования
2	ОПК-2 способностью использовать знания о современной физической картине мира и эволюции Вселенной, пространственновременных закономерностях, строении вещества для понимания окружающего мира и явлений природы;	Знать и понимать: современные образовательные и информационные технологии, применяемые при проектировании механических систем Уметь: использовать современные информационные технологии и прикладное программное обеспечение при выполнении проектных и проверочных расчетов механических систем Владеть: способностью приобретать новые естественнонаучные знания в области механики, используя современные образовательные и информационные технологии
3	ПК-5 способностью осуществлять экспертизу технической документации, надзор и контроль состояния и эксплуатации подвижного состава, объектов транспортной инфраструктуры, выявлять резервы, устанавливать причины неисправностей и недостатков в работе, принимать меры по их устранению и повышению эффективности использования.	Знать и понимать: методы теоретического и экспериментального исследования механических систем и устройств Уметь: применять математические модели механических систем и устройств для выполнения инженерных расчетов. Владеть: типовыми методами анализа напряженного и деформированного состояния элементов конструкций и деталей машин при выполнении проектных и проверочных расчетов механических систем и устройств.

4. ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ) В ЗАЧЕТНЫХ ЕДИНИЦАХ И АКАДЕМИЧЕСКИХ ЧАСАХ

4.1. Общая трудоемкость дисциплины составляет:

2 зачетные единицы (72 ак. ч.).

4.2. Распределение объема учебной дисциплины на контактную работу с преподавателем и самостоятельную работу обучающихся

	Количество	о часов
Вид учебной работы	Всего по учебному плану	Семестр 2
Контактная работа	9	9,25
Аудиторные занятия (всего):	9	9
В том числе:		
лекции (Л)	4	4
практические (ПЗ) и семинарские (С)	4	4
Контроль самостоятельной работы (КСР)	1	1
Самостоятельная работа (всего)	59	59
ОБЩАЯ трудоемкость дисциплины, часы:	72	72
ОБЩАЯ трудоемкость дисциплины, зач.ед.:	2.0	2.0
Текущий контроль успеваемости (количество и вид текущего контроля)	КРаб (1)	КРаб (1)
Виды промежуточной аттестации (экзамен, зачет)	Диф.зачёт	Диф.зачёт

4.3. Содержание дисциплины (модуля), структурированное по темам (разделам)

						еятельнос		/	Формы текущего	
№ п/п	Семестр	Тема (раздел) учебной дисциплины	Л	B TOM	числе инт ПЗ/ЕП	ерактивно КСР	ди форме	Всего	контроля успеваемости и промежу- точной аттестации	
1	2	3	4	5	6	7	8	9	10	
1	2	Раздел 1 Раздел 1. Статика	1/0	3	1/0	,	20	22/0	, выполнение контрольной	
		Проекция силы на ось; момент силы относительно точки и оси; связи и реакции связей; теория пар сил; условия равновесия плоской и пространственной систем сил							работы	
2	2	Раздел 2 Раздел 2. Кинематика Кинематика точки	1/0		1/0		20	22/0	, выполнение контрольной работы	
		(траектория, скорость, ускорение); поступательное, вращательное и плоскопараллельное движения твердого тела; сложное движение точки								
3	2	Раздел 3 Раздел 3. Динамика Аксиомы динамики точки; дифференциальные уравнения движения точки; введение в динамику системы; общие теоремы динамики точки и тела; принцип Даламбера.	2/0		2/2		19	23/2	, выполнение контрольной работы	
4	2	Раздел 4 Допуск к зачету				1/0		1/0	, защита контрольной работы	
5	2	Раздел 6 Дифференцированный зачет						4/0	Диф.зачёт	
6	2	Раздел 7 Контрольная работа						0/0	КРаб	
7		Раздел 5 Зачет с оценкой							, зачет с оценкой	
8		Всего:	4/0		4/2	1/0	59	72/2		

4.4. Лабораторные работы / практические занятия

Лабораторные работы учебным планом не предусмотрены.

Практические занятия предусмотрены в объеме 4 ак. ч.

№ п/п	№ семестра	Тема (раздел) учебной дисциплины	Наименование занятий	Всего ча- сов/ из них часов в интерак- тивной форме
1	2	3	4	5
1	2	Раздел 1. Статика	Равновесие произвольной плоской системы сил; равновесие пространственной системы сил	1/0
2	2	Раздел 2. Кинематика	Вращательное движение твердого тела; определение скоростей точек при плоскопараллельном движении твердого тела; определение скорости точки в сложном движении	1/0
3	2	Раздел 3. Динамика	Первая основная задача динамики точки; теорема об изменении кинетической энергии системы; принцип Даламбера	2/2
	I	I	ВСЕГО:	4/2

4.5. Примерная тематика курсовых проектов (работ)

Курсовой проект /Курсовая работа по дисциплине «Теоретическая механика» - не предусмотрен/а.

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Образовательные технологии, используемые при обучении по дисциплине "Теоретическая механика", направлены на реализацию компетентностного подхода и широкое использование в учебном процессе активных и интерактивных форм проведения занятий в сочетании с внеаудиторной работой с целью формирования и развития профессиональных навыков студентов.

При выборе образовательных технологий традиционно используется лекционно-семинарско-зачетная система, а также информационно-коммуникационные технологии, исследовательские методы обучения.

Самостоятельная работа студентов организована с использованием традиционных видов работы и интерактивных технологий. К традиционным видам работы относится изучение теоретического материала по учебным пособиям. К интерактивным технологиям - подготовка к текущему контролю и промежуточной аттестации с использованием СДО "Космос", интерактивные консультации в режиме реального времени по специальным технологиям, основанным на коллективных способах самостоятельной работы студентов. Реализация компетентностного и личностно-деятельностного подходов с использованием перечисленных технологий предусматривает активные и интерактивные формы обучения (диалогический характер коммуникативных действий преподавателя и студентов), при этом по дисциплине "Теоретическая механика" практические занятия с использованием интерактивных форм составляют 2 ч.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

№ п/п	<u>№</u> семестра	Тема (раздел) учебной дисциплины 3	Вид самостоятельной работы студента. Перечень учебно-методического обеспечения для самостоятельной работы 4	Всего часов 5	
1	2	Раздел 1. Статика	Изучение теоретического материала и решение типовых задач по темам: векторный момент силы относительно точки, равновесие плоской фермы; центр масс тела; решение заданий из контрольной работы.Литература: [1], [2], [3], [4]	20	
2	2	Раздел 2. Кинематика	Изучение теоретического материала и решение задач по темам: скорость и ускорение точки; ускорение точки тела при плоскопараллельном движении; теорема о сложении ускорений точки в сложном движении; решение заданий из контрольной работы . Литература: [1], [2], [3], [4]	20	
3	2	Раздел 3. Динамика	Изучение теоретического материала и решение задач по темам: дифференциальные уравнения точки; общие теоремы динамики точки; решение заданий из контрольной работы. Литература: [1], [2], [3], [4]	19	
	ВСЕГО: 59				

7. ПЕРЕЧЕНЬ ОСНОВНОЙ И ДОПОЛНИТЕЛЬНОЙ ЛИТЕРАТУРЫ, НЕОБХОДИМОЙ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

7.1. Основная литература

№ п/п	Наименование	Автор (ы)	Год и место издания Место доступа	Используется при изучении разделов, номера страниц
1	Краткий курс теоретической механики	Тарг С.М.	2007, Москва: Высшая школа, библиотека РОАТ	Используется при изучении разделов, номера страниц Раздел 1: стр. 9-94; Раздел 2: стр. 95-179; Раздел 3: стр. 180-272
2	Курс теоретической механики	Мещеряков В.Б.	2012, Москва, библиотека РОАТ	Используется при изучении разделов, номера страниц Раздел 1: стр. 7-79; Раздел 2: стр. 80-115; Раздел 3: стр. 132-163

7.2. Дополнительная литература

№ п/п	Наименование	Автор (ы)	Год и место издания Место доступа	Используется при изучении разделов, номера страниц
3	Теоретическая механика	Цывильский В.Л.	2008, Москва: Высшая школа, библиотека РОАТ	Используется при изучении разделов, номера страниц Раздел 1: стр. 8-79; Раздел 2: стр.80-135; Раздел 3: стр. 151-163, 192-200
4	Теоретическая механика	Капранов И.В., Шумейко Г.С.	2014, Москва, МГУПС, библиотека РОАТ	Используется при изучении разделов, номера страниц Раздел 1: стр. 7-38; Раздел 2: стр. 39-74; Раздел 3: стр. 75- 103

8. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ "ИНТЕРНЕТ", НЕОБХОДИМЫЕ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

- 1.Официальный сайт МИИТ http://miit.ru/
- 2.Электронно-библиотечная система POAT http://lib.rgotups.ru/
- 3.Электронно-библиотечная система научно-технической библиотеки МИИТ http://library.miit.ru/
- 4. Система дистанционного обучения http://www.sdo.roat-rut.ru/
- 5. Официальный сайт библиотеки POAT http://lib.rgotups.ru/

- 6.Электронно0библиотечная система ibooks.ru- http://ibooks.ru/
- 7. Поисковые системы «Яндекс», «Google» для доступа к тематическим информационным ресурсам
- 8. Электронно-библиотечная система издательства «Лань» http://e.lanbook.com/
- 9. Электронно-библиотечная система «BOOK.ru» http://www.book.ru/

9. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Программное обеспечение должно позволять выполнить все предусмотренные учебным планом виды учебной работы по дисциплине «Теоретическая механика»: теоретический курс, практические занятия, задания на контрольную работу, тестовые и экзаменационные вопросы по курсу. Все необходимые для изучения дисциплины учебно-методические материалы размещены на сайте: http://www.sdo.roat-rut.ru/.

- Программное обеспечение для выполнения практических заданий включает в себя специализированное прикладное программное обеспечение MatCad, Компас, а также программные продукты общего применения
- Программное обеспечение для проведения лекций, демонстрации презентаций и ведения интерактивных занятий: Microsoft Office 2003 и выше.
- Программное обеспечение, необходимое для оформления отчетов и иной документации: Microsoft Office 2003 и выше.
- Программное обеспечение для выполнения текущего контроля успеваемости: Браузер Internet Explorer 6.0 и выше.

10. ОПИСАНИЕ МАТЕРИАЛЬНО ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Учебная аудитория должна соответствовать требованиям пожарной безопасности и охраны труда по освещенности, количеству рабочих (посадочных) мест студентов и качеству учебной (аудиторной) доски, а также соответствовать условиям пожарной безопасности. Освещенность рабочих мест должна соответствовать действующим СНиПам.

Кабинеты оснащены следующим оборудованием, приборами и расходными материалами, обеспечивающими проведение предусмотренных учебным планом занятий по дисциплине:

-для проведения лекций, демонстрации презентаций и ведения интерактивных занятий: переносной проектор и компьютер с минимальными требованиями -Pentium 4, ОЗУ 4 ГБ, HDD 100 ГБ, USB 2,0.

-для проведения практических занятий и лабораторных работ: компьютерный класс, компьютеры с минимальными требованиями -Pentium 4, ОЗУ 4 ГБ, HDD 100 ГБ, USB 2,0. Технические требования к оборудованию для осуществления учебного процесса с использованием дистанционных образовательных технологий:

колонки, наушники или встроенный динамик(для участия в аудиоконференции); микрофон или гарнитура (для участия в аудиоконференции); веб-камеры (для участия в видео-конференции);

для ведущего: компьютер с процессором Intel Core 2 Duo от 2 $\Gamma\Gamma$ ц (или аналог) и выше, от 2 Γ б свободной оперативной памяти; для студента: компьютер с процессором Intel Celeron от 2 $\Gamma\Gamma$ ц (или аналог) и выше, 1 Γ б свободной оперативной памяти.

Технические требования к каналам связи: от 128 кбит/сек исходящего потока; от 256

кбит/сек входящего потока. При использовании трансляции рабочего стола рекомендуется от 1 мбит/сек входящего потока(для студента). Нагрузка на канал для каждого участника вебинара зависит от используемых возможностей вебинара. Если в вебинаре планируется одновременно использовать 2 видеотрансляции в конференции и одну трансляцию рабочего стола, то для студента рекомендуется использовать от 1,5 мбит/сек входящего потока.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

В процессе освоения дисциплины "Теоретическая механика" предусмотрена контактная работа с преподавателем, в том числе с применением дистанционных образовательных технологий, которая включает в себя лекционные занятия, практические занятия, лабораторные работы, групповые консультации, индивидуальную работу с преподавателем, а также аттестационные испытания промежуточной аттестации обучающихся.

11.1. Порядок освоения учебной дисциплины

Приступая к изучению учебной дисциплины, необходимо внимательно ознакомится со всеми разделами Рабочей программы и составить план работы на весь период, в котором планируется изучение дисциплины. Для этого рекомендуется:

- Ознакомиться с расписанием учебных занятий на сайте roat-rut.ru.
- Приобрести или получить в библиотеке (http://lib.rgotups.ru/) рекомендованные в разделе 7 настоящей программы учебники, учебные пособия, справочную литературу и другие методические и информационно-справочные материалы.
- Произвести анализ и примерную оценку объема и трудоемкости работы по изучению отдельных разделов дисциплины и выполнению самостоятельной работы. С учетом расписания учебных занятий составить план работы и сроки выполнения ее разделов в каждом семестре.
- Приступить к освоению разделов учебной дисциплины в соответствии с п. 4.3. Рабочей программы.
- 11.2. Рекомендации по выполнению отдельных разделов Рабочей программы
- Лекции дают систематизированные основы научных знаний по изучаемой учебной дисциплины и концентрируют внимание на наиболее важных и проблемных вопросах. Целесообразно вести конспект лекций, быть внимательным и инициативным, активно воспринимать получаемую информацию. Законспектированные темы лекционных занятий необходимо систематизировать по разделам рабочей программы и использовать при подготовке к промежуточной аттестации.

Практические занятия используют полученные теоретические знания предусмотренные профессиональными компетенциями для решения типовых задач. Практические занятия являются обязательным видом аудиторных занятий и проводятся по утвержденному расписанию учебных занятий. Перед началом занятий необходимо ознакомиться с их тематикой (п. 4.4.2.), подобрать и тщательно проработать теоретический материал по теме занятия, (п.п. 7.1 и 7.2). На практическом занятии необходимо иметь при себе конспект лекций.

Самостоятельная работа — наиболее трудоемкая часть учебного процесса. Наиболее эффективным методом освоения учебной дисциплины является конспектирование изучаемых тем разделов учебной дисциплины с последующим самоконтролем результатов освоения. Самоконтроль результатов освоения разделов учебной дисциплины рекомендуется проводить с использованием контрольных вопросов, ФОС дисциплины, а

также решением типовых задач и примеров, приведенных в литературных источниках и методических пособиях.

При изучении дисциплины с использованием элементов дистанционных технологий обучения:

студент должен самостоятельно изучить материалы электронного контента (лекции, практические занятия, презентация курса), которые размещены в системе ДО http://www.sdo.roat-rut.ru/ . . Вопросы можно направлять ведущему преподавателю на электронную почту кафедры .

Практические занятия включают в себя решение типовых задач.

В рамках самостоятельной работы студент отрабатывает отдельные темы по электронным пособиям, осуществляет подготовку к промежуточному и текущему контролю знаний, в том числе в интерактивном режиме, получает интерактивные консультации в режиме реального времени.

Промежуточной аттестацией по дисциплине являетс язачет с оценкой. Для допуска к зачету с оценкой студент должен выполнить и защитить контрольную работу. Подробное описание процедуры проведения промежуточной аттестации приведено в ФОС по дисциплине.