МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы специалитета по специальности 26.05.07 Эксплуатация судового электрооборудования и средств автоматики, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Теоретическая механика

Специальность: 26.05.07 Эксплуатация судового

электрооборудования и средств автоматики

Специализация: Эксплуатация судового электрооборудования

и средств автоматики

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 1093451

Подписал: заведующий кафедрой Зябров Владислав

Александрович

Дата: 25.09.2024

1. Общие сведения о дисциплине (модуле).

Целями освоения дисциплины (модуля) являются:

- изучение общей теории о совокупности сил, приложенных к материальным телам, и об основных операциях над силами, позволяющих приводить совокупности их к наиболее простому виду, выводить условия равновесия материальных тел, находящихся под действием заданной совокупности сил, и определять реакции связей, наложенных на данное материальное тело;
- изучение способов количественного описания существующих движений материальных тел в отрыве от силовых взаимодействий их с другими телами или физическими полями, колебательные движения (вибрации) в широком их диапазоне от вибраций в машинах и фундаментах, качки кораблей на волнении, колебаний самолетов в воздухе, тепловозов, электровозов, вагонов и других транспортных средств, до колебаний в приборах управления;
- изучение движения материальных тел в связи с механическими взаимодействиями между ними, основываясь на законах сложения сил, правилах приведения сложных их совокупностей к простейшему виду и приемах описания движений, установление законов связи действующих сил с кинематическими характеристиками движений и применение этих законов для построения и исследования механико-математических моделей, адекватно описывающих разнообразные механические явления.

Задачами дисциплины (модуля) являются:

- освоение методов решения научно-технических задач в области механики и основных алгоритмов математического моделирования механических явлений;
- овладение навыками практического использования методов, предназначенных для математического моделирования движения и равновесия материальных тел и □ механических систем;
- формирование устойчивых навыков по применению фундаментальных положений теоретической механики при изучении дисциплин профессионального цикла и научном анализе ситуаций, с которыми выпускнику приходится сталкиваться в профессиональной деятельности.

2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-2** Способен применять естественнонаучные и общеинженерные знания, аналитические методы в профессиональной деятельности;
- **ПК-22** Способен разработать проекты объектов профессиональной деятельности с учетом физико-технических, механико-технологических, эстетических, эргономических, экологических и экономических требований.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- основные понятия и аксиомы механики, случаи приведения действующей на тело системы сил к простейшем виду, условия уравновешенности произвольной системы сил, методы нахождения реакций связей в покоящейся системе твердых тел, способы нахождения их центров тяжести, законы трения скольжения и качения;
- кинематические характеристики движения точки при различных способах задания движения, характеристики движения тела и его отдельных точек при различных способах задания движения, скорость и ускорение точки при сложном движении;
- дифференциальные уравнения движения точки относительно инерциальной и неинерциальной системы координат, общие теоремы динамики, основные понятия и принципы аналитической механики (принцип Даламбера, принцип возможных перемещений).

Уметь:

- приводить действующих систему сил К более простому эквивалентному виду, составлять уравнения равновесия тела, находящегося под действием произвольной системы сил, находить положения центров тяжести тел;
- вычислять скорости и ускорения точек тел и самих тел, совершающих поступательное, вращательное и плоское движения;
- решать прямую и обратную задачи динамики точки, вычислять кинетическую энергию многомассовой системы, работу сил, приложенных к твердому телу при указанных движениях.

Владеть:

- навыками исследования равновесия твердого тела (системы тел) под действием плоской и пространственной систем сил;
 - навыками решения задач по кинематике точки и твердого тела;
- навыками составления и решения дифференциальных уравнений движения точки и системы, основами методов механики.

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 4 з.е. (144 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

		Количество часов		
Тип учебных занятий	Всего	Семестр		
		№ 2	№3	
Контактная работа при проведении учебных занятий (всего):	80	32	48	
В том числе:				
Занятия лекционного типа	32	16	16	
Занятия семинарского типа	48	16	32	

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 64 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекшионного типа.

№ п/п	Тематика лекционных занятий / краткое содержание	
1	Раздел 1 «Статика». Задачи курса теоретической механики.	
	Статика. Основные понятия и определения. Аксиомы статики. Тела свободные и несвободные.	
	Связи и их реакции. Аксиома освобождаемости от связей.	

<u>№</u>		
л/п	Тематика лекционных занятий / краткое содержание	
2	Системы сходящихся сил. Геометрическое и аналитические условия равновесия	
_	систем сходящихся сил.	
	Теорема о трех силах. Произвольная плоская система сил. Момент силы относительно центра.	
	Теорема Вариньона о моменте равнодействующей силы. Пара сил и ее момент. Свойства момента	
	пары.	
3	Приведение произвольной плоской системы сил к заданному центру. Главный	
	вектор и главный момент.	
Условия равновесия произвольной плоской системы сил – основная форма. Дополните		
4	условий равновесия произвольной плоской системы сил. Плоские фермы.	
7	Условия статической определимости и геометрической неизменяемости. Понятие о способах	
	расчета ферм. Понятие о равновесии систем тел. Система параллельных сил. Условия равновесия	
	системы параллельных сил. Центр параллельных сил. Центр тяжести твердого тела. Способы	
	определения центров тяжести тел.	
5	Произвольная пространственная система сил.	
	Приведение пространственной системы сил к заданному центру. Момент силы относительно оси. Условия равновесия произвольной пространственной системы сил. Трение скольжения. Законы	
	Кулона. Угол трения и конус трения. Трение качения. Равновесие твердых тел при наличии сил	
	трения.	
6	Раздел 2 «Кинематика». Кинематика точки.	
	Основные понятия и определения. Способы задания движения точки. Скорость и ускорение точки	
	при векторном способе задания движения. Координатный способ задания движения точки.	
	Скорость и ускорение точки при координатном способе задания движения. Естественный способ	
7	задания движения точки. Скорость и ускорение точки при естественном способе задания движения. Поступательное и вращательное движение твердого тела вокруг неподвижной оси.	
,	Линейные скорости и ускорения точек тела при вращательном движении твердого тела вокруг	
	неподвижной оси. Сложное движение точки. Теорема сложения скоростей. Теорема сложения	
	ускорений. Анализ ускорения Кориолиса.	
8	Плоское движение тела.	
	Скорости точек тела. Мгновенный центр скоростей. Ускорение точек тела. Мгновенный центр	
9	ускорений. Раздел 3 «Динамика». Введение в динамику.	
9	Газдел 5 «Динамика». Бведение в динамику. Законы классической динамики. Два типа задач динамики точки. Интегрирование	
	дифференциальных уравнений движения материальной точки методом разделения переменных.	
10	Теория малых колебаний механических систем без учета и с учетом сил	
	сопротивления.	
	Вынужденные колебания. Резонанс.	
11	Механическая система.	
	Центр масс. Сведения о моментах инерции. Теорема о движении центра масс. Сохранение движения	
12	центра масс.	
12	Общие теоремы динамики.	
13	Общие теоремы динамики.	
13	Работа и мощность силы. Теорема об изменении кинетической энергии.	
14	Принцип Даламбера для материальной точки и системы.	
1-7	Главный вектор и главный момент сил инерции.	
15	Принцип возможных перемещений.	
<u> </u>	Общее уравнение динамики.	
	·	

№ п/п	Тематика лекционных занятий / краткое содержание
16	Обобщенные координаты и силы.
	Уравнения движения механической системы в обобщенных координатах (уравнения Лагранжа
	второго рода).

4.2. Занятия семинарского типа.

Практические занятия

	практические занятия	
№ п/п	Тематика практических занятий/краткое содержание	
1	Раздел 1 «Статика». Понятие силы.	
	Связи и их реакции. Распределенная нагрузка. Сложение сил. Проекция силы на ось и на плоскость. Аналитический способ задания и сложения сил. Система сходящихся сил, условия ее равновесия. Теорема о трех силах	
2	Векторный и алгебраический моменты силы относительно центра.	
	Пара сил. Векторный и алгебраический моменты пары сил. Условия равновесия твердого тела под действием произвольной плоской системы сил. Основная и дополнительные формы записи условий равновесия. Случай параллельных сил. Решение задач с различными видами связей и нагрузок.	
3	Произвольная пространственная система сил.	
	Момент силы относительно оси. Способы его определения. Двойное проецирование. Условия равновесия произвольной пространственной системы сил. Решение задач о равновесии пространственной системы сил.	
4	Случай параллельных сил.	
	Система параллельных сил. Центр параллельных сил. Центр тяжести твердого тела. Центр тяжести однородного тела. Практические способы и приемы определения положения центра тяжести. Законы трения скольжения. Равновесие твердых тел при наличии сил трения скольжения. Угол	
	трения и конус трения. Трение качения. Равновесие с учетом сопротивления качению.	
5	Раздел 2 «Кинематика». Основные понятия.	
	Траектория точки. Определение траектории движения точки. Определение скорости и ускорения точки при векторном способе задания движения.	
6	Определение скорости и ускорения точки при координатном способе задания	
	лвижения.	
	Естественные оси координат. Скорость и ускорение точки при естественном способе задания	
	движения. Связь координатного и естественного способов. Определение радиуса кривизны, касательного и нормального ускорений.	
7	Простейшие движения твердого тела.	
	Поступательное движение тела. Вращение тела вокруг неподвижной оси. Определение скоростей и ускорений точек тела при вращении тела вокруг неподвижной оси. Преобразование вращательного движения. Связь угловых и линейных кинематических характеристик. Сложное движение точки. Определение скоростей при сложном движении точки. Теорема сложения скоростей.	
8	Плоско-параллельное движение твердого тела.	
0	Распределение скоростей. Определение скоростей точек тела. Мгновенный центр скоростей, частные случаи. Кинематический анализ работы нескольких типов механизмов (кривошипношатунного, планетарного, блочного).	
9	Раздел 3 «Динамика». Введение в динамику.	
	Законы классической динамики. Два типа задач динамики точки.	
10	Интегрирование дифференциальных уравнений движения материальной точки Интегрирование дифференциальных уравнений движения материальной точки методом разделения переменных.	

$N_{\underline{0}}$	T		
Π/Π	Тематика практических занятий/краткое содержание		
11	Теория малых колебаний механических систем без учета сил сопротивления.		
	Решение задач.		
12	Теория малых колебаний механических систем с учетом сил сопротивления.		
	Решение задач.		
13	Механическая система.		
	Теорема о движении центра масс. Сохранение движения центра масс. Количество движения		
1.4	материальной точки и системы. Теоремы об изменении и законы сохранения количества движения.		
14	Сведения о моментах инерции.		
1.5	Моменты количества движения материальной точки и системы относительно центра и оси.		
15	Момент количества движения твердого тела при его вращении вокруг		
	неподвижной оси.		
	Теоремы об изменении и законы сохранения моментов количества движения. Динамика		
16	вращательного движения. Работа и мощность силы.		
10	Кинетическая энергия. Теорема Кенига.		
17	Теорема об изменении кинетической энергии в интегральной форме.		
18	Теорема об изменении кинетической энергии в дифференциальной форме.		
19	Принцип Даламбера для материальной точки и системы.		
20	Определение динамических реакций.		
21	Принцип возможных перемещений.		
	Решение задач.		
22	Общее уравнение динамики.		
23	Общее уравнение динамики.		
	Исследование движения различных типов механизмов.		
24	Обобщенные координаты и силы.		
	Уравнения движения механической системы в обобщенных координатах (уравнения Лагранжа		
	второго рода).		

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Подготовка к практическим занятиям.
2	Работа с лекционным материалом.
3	Работа с литературой.
4	Самостоятельное изучение темы "Потенциальная энергия механической системы. Консервативные системы. Закон сохранения механической энергии."
5	Подготовка к промежуточной аттестации.
6	Подготовка к текущему контролю.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ π/π	Библиографическое описание	Место доступа
1	Яковенко, Г. Н. Краткий курс теоретической	https://e.lanbook.com/book/418022
	механики : учебное пособие / Г. Н.	
	Яковенко. — 7-е изд. (эл.). — Москва:	
	Лаборатория знаний, 2024. — 119 с. — ISBN	
	978-5-93208-733-6	
2	Мещерский, И. В. Задачи по теоретической	URL: https://e.lanbook.com/book/206417
	механике: учебное пособие / И. В.	(дата обращения: 22.05.2021) Текст:
	Мещерский; под редакцией В. А. Пальмова,	электронный.
	Д. Р. Меркина. — 52-е изд., стер. — Санкт-	
	Петербург : Лань, 2021. — 448 с. — ISBN	
	978-5-8114-4190-7.	
3	Тарг, С.М. Краткий курс теоретической	https://djvu.online/file/JzCTKylNXzvQJ
	механики : учеб. для втузов / С.М. Тарг	
	11-е изд., испр М. : Высш. шк., 1995 416	
	c ISBN 5-06-003117-9.	
4	Сборник заданий для курсовых работ по	https://djvu.online/file/aQQC3mkJSHOJH
	теоретической механике: учеб. пособие для	
	техн. вузов / А.А. Яблонский, С.С. Норейко,	
	С.А. Вольфсон и др. ; Под общ. ред. А.А.	
	Яблонского 7-е изд., испр М.:	
	"Интеграл-Пресс", 2001 384 с ISBN 5-	
	89602-016-3.	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (https://www.miit.ru/)

Научно-техническая библиотека РУТ (МИИТ) (http:/library.miit.ru)

Образовательная платформа «Юрайт» (https://urait.ru/)

Общие информационные, справочные и поисковые «Консультант Плюс» (http://www.consultant.ru/),

«Гарант» (http://www.garant.ru/),

Главная книга (https://glavkniga.ru/)

Электронно-библиотечная система издательства (http://e.lanbook.com/)

Электронно-библиотечная система ibooks.ru (http://ibooks.ru/)

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Пакет программ MS Office.

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Меловая и маркерная доски, маркеры.

9. Форма промежуточной аттестации:

Зачет во 2 семестре.

Экзамен в 3 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, доцент, к.н. кафедры «Теоретическая механика»

А.Н. Телых

Согласовано:

Заведующий кафедрой ТМ

С.Б. Косицын

Заведующий кафедрой СЭУ

В.А. Зябров

Председатель учебно-методической

комиссии

М.Ф. Гуськова