МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы специалитета по специальности 26.05.06 Эксплуатация судовых энергетических установок,

утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Теоретические основы электротехники

Специальность: 26.05.06 Эксплуатация судовых

энергетических установок

Специализация: Эксплуатация судовых энергетических

установок

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 1093451

Подписал: заведующий кафедрой Зябров Владислав

Александрович

Дата: 14.03.2024

1. Общие сведения о дисциплине (модуле).

Целью освоения дисциплины «Теоретические основы электротехники» является формирование у обучающихся фундаментальных знаний о:

- методах расчета и экспериментального исследования электрических цепей и электромагнитных полей в специальности;
 - развитие основ профессиональной культуры и логического мышления.

Задачами освоения дисциплины «Теоретические основы электротехники» является:

- изучение основных законов и методов расчета и экспериментального исследования электрических цепей и электромагнитных полей;
 - изучение истории и перспектив развития электротехники;
- формирование у курсантов знаний в соответствии с квалификационной характеристикой инженера-электромеханика в области теоретических основ электротехники.

2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-2** Способен применять естественнонаучные и общеинженерные знания, аналитические методы в профессиональной деятельности;
- **ОПК-3** Способен проводить измерения и наблюдения, обрабатывать и представлять экспериментальные данные;
- **ПК-69** Эксплуатация электрического и электронного оборудования на уровне управления: способен осуществлять эксплуатацию электрооборудования, электронной аппаратуры и систем управления на основе знаний их базовой конфигурации, характеристик, принципов работы и правил использования по назначению.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Уметь:

применять основные законы естественнонаучных дисциплин, связанные в профессиональной деятельности;

обрабатывать экспериментальные данные, интерпретировать и профессионально представлять полученные результаты;

обеспечивать параллельное соединение генераторных установок и переход с одной на другую;

эксплуатировать судовые электроприводы и системы управления ими эксплуатировать электрические преобразователи, генераторы и их системы управления;

производить эксплуатацию оборудования и систем в соответствии с руководствами по эксплуатации;

эксплуатировать судовую электронику и автоматизированные системы;

Знать:

основные законы естественнонаучных дисциплин, связанные с профессиональной деятельностью;

способы измерений, записи и хранения результатов наблюдений, методы обработки и представления экспериментальных данных;

базовую конфигурацию и принципы работы генераторных и распределительных систем, подготовку и пуск генераторов;

базовую конфигурацию и принципы работы электромоторов, включая методологию их пуска;

базовую конфигурацию и принципы работы высоковольтных установок;

базовую конфигурацию и принципы формирования и работы контрольных цепей и связанных с ними системных устройств;

базовую конфигурацию, принципы работы и характеристики базовых элементов электронных цепей;

базовую конфигурацию, принципы работы автоматических контрольных систем;

базовую конфигурацию, принципы работы, функции, характеристики и свойства контрольных систем для отдельных механизмов, включая органы управления главной двигательной установкой и автоматические органы управления паровым котлом;

базовую конфигурацию и принципы работы систем управления различных методологий и их характеристики;

базовую конфигурацию, принципы работы и характеристики пропорционально-интегрально-дифференциального (ПИД) регулирования и связанных с ним системных устройств для управления процессом;

морскую электротехнику, электронное и электрическое оборудование, автоматические системы управления и предохранительные устройства;

проектные характеристики и системная конфигурация аппаратуры автоматического контроля и предохранительных устройств для главного двигателя, генератора и системы распределения, парового котла;

проектные характеристики и системная конфигурация аппаратуры оперативного управления электромоторов;

проектные характеристики высоковольтных установок;

характеристики оборудования гидравлического и пневматического управления;

требования классификационных обществ и надзорных органов в отношении эксплуатации судового электрооборудования;

правила поиска, обнаружения и устранения неисправностей в системах управления;

правила эксплуатации судовых электроприводов и систем управления ими;

Владеть:

навыками применения основных законов естественнонаучных дисциплин, связанные в профессиональной деятельности;

навыками работы с измерительными приборами и инструментами;

навыками эксплуатации генераторных и распределительных систем; подготовки и пуска генераторов;

навыками эксплуатации высоковольтных установок;

навыками управления эксплуатацией судового электрооборудования и средств автоматики;

навыками эксплуатации электронного и электрического оборудования систем управления;

навыками эксплуатации электроэнергетических систем;

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 3 з.е. (108 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Коли	Количество часов	
	Всего	Семестр №5	
Контактная работа при проведении учебных занятий (всего):	44	44	
В том числе:			
Занятия лекционного типа	22	22	
Занятия семинарского типа	22	22	

3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с

педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 64 академических часа (ов).

- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

№	Тематика лекционных занятий / краткое содержание	
Π/Π		
1	Основные понятия и законы теории электрических и магнитных цепей	
	Рассматриваемые вопросы:	
	1.1. Элементы электрических цепей	
	1.1.1. Резистивный элемент (резистор).	
	1.1.2. Индуктивный элемент (катушка индуктивности).	
	1.1.3. Емкостный элемент (конденсатор).	
	1.2. Топология электрической цепи.	
	1.3. Основные законы электрических цепей.	
	1.4. Основные понятия теории магнитных цепей.	
	1.5. Основные законы магнитных цепей.	
2	Теория линейных электрических цепей.	
	Рассматриваемые вопросы:	
	2.1. Схемы замещения источников электрической энергии постоянного тока	
	2.2. Цепи синусоидального тока	
	2.2.1. Основные понятия и определения	
	2.2.2. Представление синусоидальных ЭДС, напряжений и токов с помощью векторов	
	2.2.3. Представление синусоидальных ЭДС, напряжений и токов комплексными числами	
	2.2.4. Действующее значение синусоидальных ЭДС, напряжений и токов	
	2.2.5. Элементы цепи синусоидального тока. Векторные диаграммы	
	2.2.6. Последовательное соединение резистивного и индуктивного элементов	
	2.2.7. Последовательное соединение резистивного и емкостного элементов	
	2.2.8. Параллельное соединение резистивного и емкостного элементов	
	2.2.9. Параллельное соединение резистивного и индуктивного элементов	
	2.2.10. Преобразование энергии в электрической цепи. Мгновенная, активная, реактивная и полная	
	мощности синусоидального тока	
	2.2.11. Применение статических конденсаторов для повышения cos?	
	2.2.12. Резонансы в цепях синусоидального тока	
	2.3. Методы анализа линейных цепей с двухполюсными и многополюсными элементами	
	2.3.1. Векторные, топографические и потенциальные диаграммы	
	2.3.2. Основы символического метода расчета цепей синусоидального тока	

No		
п/п	Тематика лекционных занятий / краткое содержание	
	2.3.3. Метод контурных токов	
	2.3.4. Метод узловых потенциалов	
	2.3.5. Метод наложения	
	2.3.6. Метод эквивалентного генератора	
	2.3.7. Элементы теории четырехполюсников	
	2.3.8. Метод преобразований	
	2.3.9. Баланс мощностей.	
3	Трехфазные электрические цепи	
	Рассматриваемые вопросы:	
	3.1. Основные понятия и определения	
	3.2. Схемы соединения трехфазных систем	
	3.2.1. Соединение в звезду	
	3.2.2. Соединение в треугольник	
	3.3. Расчет трехфазных цепей	
	3.3.1. Расчет симметричных режимов работы трехфазных систем	
	3.3.2. Расчет несимметричных режимов работы трехфазных систем	
	3.3.3. Применение векторных диаграмм для анализа несимметричных режимов	
	3.4. Мощность в трехфазных цепях	
4	Линейные электрические цепи при несинусоидальных периодических токах	
	Рассматриваемые вопросы:	
	4.1. Основные понятия	
	4.2. Характеристики несинусоидальных величин	
	4.3. Разложение периодических несинусоидальных кривых в ряд Фурье	
	4.4. Методика расчета линейных цепей при периодических несинусоидальных токах	
4.5. Особенности протекания несинусоидальных токов через пассивные элементы цепи		
	4.6. Переходные процессы в линейных электрических цепях с сосредоточенными параметрами методы их расчета	
	4.7. Примеры расчета переходных процессов	
5	Нелинейные электрические и магнитные цепи.	
	Рассматриваемые вопросы:	
	5.1. Основные понятия и определения	
	5.2. Нелинейные электрические цепи	
	5.3. Методы анализа нелинейных электрических цепей	
	5.3.1. Графические методы	
	5.3.2. Аналитические методы	
	5.3.3. Численные методы	
	5.4. Нелинейные магнитные цепи	
	5.4.1. Общая характеристика задач и методов анализа нелинейных магнитных цепей	
	5.4.2. Регулярные методы расчета	
	5.4.3. Графические методы расчета	
	5.4.4. Итерационные методы расчета	
	5.5. Переходные процессы в нелинейных цепях	
	5.5.1. Особенности расчета переходных процессов в нелинейных цепях	
	5.5.2. Аналитические и численные методы анализа переходных процессов в нелинейных цепях	
	5.6. Цепи с распределенными параметрами	
	5.6.1. Основные понятия	
	5.6.2. Переходные процессы в цепях с распределенными параметрами	
6	Стационарные электрическое и магнитное поля	
	Рассматриваемые вопросы:	
	6.1 Основные понятия и определения.	
	6.1.1 Основные векторные величины, характеризующие электромагнитное поле.	

No	Томотичес измичения из заматий / инолиза за чениеми	
Π/Π	Тематика лекционных занятий / краткое содержание	
	6.1.2 Законы электромагнитного поля в интегральной форме.	
	6.1.3 Уравнения электромагнитного поля в дифференциальной форме.	
	6.2 Электростатическое поле.	
	6.2.1.Основные уравнения.	
	6.2.2.Электростатическое экранирование. Граничные условия.	
	6.3 Аналитические методы расчета стационарных полей в различных средах	
7	Переменное электромагнитное поле	
	Рассматриваемые вопросы:	
	7.1 Переменное электромагнитное поле.	
	7.1.1. Основные уравнения.	
	7.1.2.Теорема Умова – Пойтинга.	
	7.1.3. Поверхностный эффект и эффект близости	
	7.1.4.Электромагнитное экранирование.	
	7.1.5. Численные методы расчета электромагнитных полей при сложных граничных условиях.	
	7.2 Современные пакеты прикладных программ расчета электрических цепей и	
	электромагнитных полей на ПК.	

4.2. Занятия семинарского типа.

Лабораторные работы

No	Harvaranava zajananava zajananava za najan / zmanua an zanvava	
п/п	Наименование лабораторных работ / краткое содержание	
1	РАБОТА 1	
	В результате выполнения лабораторной работы студент изучает:	
	- Последовательное соединение источников напряжения (ЭДС)	
	- Закон Ома	
2	РАБОТА 2	
	В результате выполнения лабораторной работы студент изучает:	
	- Линейные резисторы	
	- Терморезисторы с отрицательным температурным коэффициентом	
	- Терморезисторы с положительным температурным коэффициентом	
	- Резисторы с зависимостью от напряжения	
	- Резисторы с зависимостью от освещенности	
3	РАБОТА 3	
	В результате выполнения лабораторной работы студент изучает:	
	- Делитель напряжения при работе вхолостую	
	- Делитель напряжения под нагрузкой	
	- Эквивалентный источник напряжения (ЭДС)	
4	РАБОТА 4	
	В результате выполнения лабораторной работы студент изучает:	
	- Электрическая мощность и работа	
	- КПД электрической цепи	
	- Согласование источника и нагрузки по напряжению, току и мощности	
5	РАБОТА 5	
	В результате выполнения лабораторной работы студент изучает:	
	- Параметры синусоидального напряжения (тока)	
	- Активная мощность цепи синусоидального тока	
6	РАБОТА 6	
	В результате выполнения лабораторной работы студент изучает:	

No		
п/п	Наименование лабораторных работ / краткое содержание	
	- Напряжение и ток конденсатора	
	- Реактивное сопротивление конденсатора	
	- Последовательное соединение конденсаторов	
	- Параллельное соединение конденсаторов	
	- Реактивная мощность конденсатора	
7	РАБОТА 7	
	В результате выполнения лабораторной работы студент изучает:	
	- Напряжение и ток катушки индуктивности	
	- Реактивное сопротивление катушки индуктивности	
	- Последовательное соединение катушек индуктивности	
	- Параллельное соединение катушек индуктивности	
	- Реактивная мощность катушки индуктивности	
8	РАБОТА 8	
	В результате выполнения лабораторной работы студент изучает:	
	- Последовательное соединение резистора и конденсатора	
	- Параллельное соединение резистора и конденсатора	
	- Последовательное соединение резистора и катушки индуктивности	
	- Параллельное соединение резистора и катушки индуктивности	
9	РАБОТА 9	
	В результате выполнения лабораторной работы студент изучает:	
	- Последовательное соединение конденсатора и катушки индуктивности	
	- Частотные характеристики последовательного резонансного контура	
10	РАБОТА 10	
	В результате выполнения лабораторной работы студент изучает:	
	- Параллельное соединение конденсатора и катушки индуктивности	
	- Частотные характеристики параллельного резонансного контура	
11	РАБОТА 11	
	В результате выполнения лабораторной работы студент изучает:	
	- Напряжения трехфазной цепи	
	- Трехфазная нагрузка, соединенная по схеме «звезда»	
	- Аварийные режимы трехфазной цепи при соединении нагрузки по схеме «звезда»	
12	РАБОТА 12	
	В результате выполнения лабораторной работы студент изучает:	
	- Трехфазные нагрузки, соединенные по схеме «треугольник»	
	- Аварийные режимы трехфазной цепи при соединении нагрузки по схеме «треугольник»	
13	РАБОТА 13	
	В результате выполнения лабораторной работы студент изучает:	
	- Переходный процесс в цепи с конденсаторам и резисторами	
14	РАБОТА 14	
	В результате выполнения лабораторной работы студент изучает:	
	- Процессы включения и отключения цепи с катушкой индуктивности	
15	РАБОТА 15	
	В результате выполнения лабораторной работы студент изучает:	
	- Определение параметров схемы замещения и построение векторной диаграммы трансформатора	
	- Внешняя характеристика и КПД трансформатора	

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Подготовка к лабораторным работам
2	Работа с лекционным материалом, литературой
3	Подготовка к промежуточной аттестации.
4	Подготовка к текущему контролю.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

	Сенин диециилины (модули).	
№ п/п	Библиографическое описание	Место доступа
1	Парамонова, В. И. Теоретические основы электротехники. Часть 1. Теория линейных и нелинейных электрических и магнитных цепей: конспект лекций / В. И. Парамонова, А. С. Смирнов Москва: МГАВТ, 2011 116 с Текст:	Научно-техническая библиотека РУТ (МИИТ), учебная библиотека АВТ
2	электронный. Нейман, В. Ю.Теоретические основы электротехники в примерах и задачах. Часть 1. Линейные электрические цепи постоянного тока / В. Ю. Нейман Новосибирск: НГТУ, 2011 116 с ISBN 978-5-7782-1796-6 Текст: электронный.	ЭБС ZNANIUM.COM [https://znanium.com] - URL: https://znanium.com/catalog/product/546599 – Режим доступа: по подписке.
3	Теоретические основы электротехники: учебник / И. Я. Лизан, К. Н. Маренич, И. В. Ковалёва [и др.] Москва; Вологда: Инфра-Инженерия, 2021 628 с ISBN 978-5-9729-0663-5 Текст: электронный.	ЭБС ZNANIUM.COM [https://znanium.com] - URL: https://znanium.com/catalog/product/1836496 – Режим доступа: по подписке.
4	Зонов, В. Н. Теоретические основы электротехники. Электрические и магнитные цепи постоянного тока: учебное пособие / В. Н. Зонов, П. В. Зонов, Ю. Б. Ефимова Новосибирск: Изд-во НГТУ, 2020 80 с ISBN 978-5-7782-4090-2 Текст: электронный.	ЭБС ZNANIUM.COM [https://znanium.com] - URL: https://znanium.com/catalog/product/1868884 – Режим доступа: по подписке.
5	Петренко, Ю. В. Теоретические основы электротехники. Электрические цепи с распределенными параметрами: учебное пособие / Ю. В. Петренко Новосибирск: Изд-во НГТУ, 2019 64 с ISBN 978-5-7782-3876-3 Текст: электронный.	ЭБС ZNANIUM.COM [https://znanium.com] - URL: https://znanium.com/catalog/product/1868885 – Режим доступа: по подписке.

6	Нейман, В. Ю. Теоретические основы электротехники в примерах и задачах. Ч. 3.	ЭБС ZNANIUM.COM [https://znanium.com] - URL:
	Четырехполюсники и трехфазные цепи / В. Ю. Нейман Новосибирск : НГТУ, 2010 144 с ISBN 978-5-7782-1547-4 Текст : электронный.	https://znanium.com/catalog/product/546532 — Режим доступа: по подписке.
7	Нейман, В. Ю. Теоретические основы электротехники в примерах и задачах. Ч. 2. Линейные электрические цепи однофазного синусоидального тока: учебное пособие / В. Ю. Нейман Новосибирск: НГТУ, 2009 150 с ISBN 978-5-7782-1225-1 Текст: электронный.	ЭБС ZNANIUM.COM [https://znanium.com] - URL: https://znanium.com/catalog/product/556633 — Режим доступа: по подписке.
8	Нейман, В. Ю. Теоретические основы электротехники в примерах и задачах. Часть 4. Линейные электрические цепи несинусоидального тока: учебное пособие / В. Ю. Нейман Новосибирск: НГТУ, 2011 182 с ISBN 978-5-7782-1821-5 Текст: электронный.	ЭБС ZNANIUM.COM [https://znanium.com] - URL: https://znanium.com/catalog/product/546552 – Режим доступа: по подписке.

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (https://www.miit.ru/);

Официальный сайт Минтранса России (https://mintrans.gov.ru/);

Электронно-библиотечная система "ZNANIUM.COM" https://znanium.com

Справочная правовая система «Консультант Плюс» http://www.consultant.ru

Сайт Научно-технической библиотеки РУТ (МИИТ) http://library.miit.ru Сайт Российской государственной библиотеки http://www.rsl.ru

Международная реферативная база данных научных изданий «Web of science» https://clarivate.com/products/web-of-science/databases/

Сайт Научной электронной библиотеки eLIBRARY.RU http://elibrary.ru Российский Речной Регистр http://www.rivreg.ru

Сайт Государственной публичной научно-технической библиотеки Poccuu http://www.gpntb.ru

Российский морской регистр судоходства http://www.rs-class.org/ru/

Сайт Всероссийского института научной и технической информации Российской академии наук (ВИНИТИ РАН) http://www.viniti.ru

- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).
- 1. Операционная система Microsoft Windows 7 (Полная лицензионная версия);
- 2. Офисный пакет приложений MS Office 2010 (Word, Excel, PowerPoint) (Полная лицензионная версия);
 - 3. Система автоматизированного проектирования Autocad
 - 4. Система автоматизированного проектирования Компас
- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Для проведения аудиторных занятий по дисциплине используется аудитория с мультимедийным оборудованием: проектор, экран, персональный компьютер/ноутбук.

Помещение для проведения лабораторных работ, оснащенные следующим оборудованием:

Специализированная мебель.

Стенд универсальный ЭО 1-СК (2 шт) – 3 раб.места

Стенд универсальный ЭП 1-СК (1шт) – 3 раб.места

3 компьютеризированных рабочих места

Используемое программное обеспечение:

Microsoft Windows 7; MS Office 2010 (Word, Excel, PowerPoint)

9. Форма промежуточной аттестации:

Зачет в 5 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

профессор, старший научный сотрудник, д.н. кафедры «Судовые энергетические установки, электрооборудование судов и автоматизация» Академии водного транспорта

А.С. Герасимов

Согласовано:

Заведующий кафедрой СЭУ

В.А. Зябров

Председатель учебно-методической

комиссии А.А. Гузенко