МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы специалитета по специальности 23.05.05 Системы обеспечения движения поездов, утвержденной первым проректором РУТ (МИИТ)

Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Теоретические основы электротехники

Специальность: 23.05.05 Системы обеспечения движения

поездов

Специализация: Электроснабжение железных дорог

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 3221

Подписал: заведующий кафедрой Шевлюгин Максим

Валерьевич

Дата: 05.11.2025

1. Общие сведения о дисциплине (модуле).

Целью освоения учебной дисциплины Теоретические основы электротехники (ТОЭ) является формирование у обучающихся представления об основных методах расчета и анализа электромагнитных процессов и преобразований энергий в электрических цепях и в электромагнитных полях на базе понимания физики этих процессов.

Задачами освоения учебной дисциплины ТОЭ являются:

- освоение методов расчета и анализа линейных и нелинейных электрических цепей постоянного тока;
- освоение символического метода расчета цепей синусоидального тока и на его базе методов расчета развлетвленных цепей синусоидального тока, в том числе цепей с взаимоиндукцией;
- освоение классического и операторного методов расчета переходных процессов в линейных цепях постоянного и переменного тока, метода интеграла Дюамеля при произвольных воздействиях и расчета т.н. некорректных задач с индуктивностями и емкостями;
 - изучение цепей трехфазного тока, в т.ч. аварийных режимов работы;
- освоение методов расчета и анализа линейных цепей при несинусоидальных токах в однофазных цепях и несинусоидальных токов и напряжений в трехфазных цепях;
- изучение основных схем, характеристик и параметров пассивных четырехполюсников и электрических реактивных фильтров;
- исследование и расчет установившихся и переходных процессов в электрических цепях с распределенными параметрами (длинных линиях);
- изучение и освоение методов расчета нелинейных и магнитных цепей постоянного и переменного тока, изучение основных схем выпрямления переменного тока, феррорезонансных явлений, изученгие основных методов расчета переходных процессов в нелинейных электрических цепях;
- изучение основных уравнений, описывающих электростатическое поле, магнитное поле, поле токов в проводящей среде, переменное электромагнитное поле, обзор основных задач, решаемых с применением теории электромагнитного поля.

2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ПК-5 - Способен применять знания в области электротехники, электроники и цифровых технологий при решении профессиональных задач .

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

основные теоретические положения электротехники, связанные с получением электрической энергии, её передачей, распределением и потреблением, расчётом и анализом установившихся и переходных электромагнитных процессов в линейных и нелинейных электрических цепях близких по структуре и параметрам к электрическим цепям электрифицированных железных дорог постоянного и переменного тока

Уметь:

применять полученные знания для расчёта и анализа электромагнитных процессов в электрических цепях другого назначения - например, для систем электроснабжения метрополитенов, городского электрического транспорта (трамвай, троллейбус), промышленных предприятий горнорудной промышленности.

Владеть:

Владеть опытом определения первичных параметров электрических цепей различного назначения, со-ставления расчетных электрических схем (схем заме-щения), расчёта вторичных (характеристических) па-раметров этих цепей. Владеть опытом проведения экспериментальных исследований в электрических цепях различного назначения.

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 16 з.е. (576 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
	Всего	Семестр

		№ 2	№3	№4
Контактная работа при проведении учебных занятий (всего):		80	96	96
В том числе:				
Занятия лекционного типа	96	32	32	32
Занятия семинарского типа	176	48	64	64

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 304 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

$N_{\underline{0}}$	Тематика лекционных занятий / краткое содержание
п/п	тематика лекционных занятии / краткое содержание
1	Цепи постоянного тока
	Рассматриваемое вопросы:
	- основные понятия (потенциал, напряжение, ток, ЭДС);
	- элементы электрической цепи и их схемы замещения, компонентные уравнения;
	- основные законы тнеории электрических цепей;
	- потенциальная диаграмма;
	- баланс мощностей;
	- методы расчета электрических цепей (расчет по законам Кирхгофа, метод узловых потенциалов,
	метод контурных токов, метод наложения, метод эквивалентного генератора).
2	Нелинейные электрические цепи постоянного тока.
	Рассматриваемы вопросы:
	- вольтампперные характеристики и классификация нелинейных элементов;
	- расчет простейших цепей (последовательной, параллельной, последовательно-параллельной);
	- применение метода эквивалентного генератора при расчете нелинейных цепей;
	- простейшие стабилизаторы напряжения и тока на нелинейных элементах;
	- метод двух узлов в приложении к нелинейным цепям.
3	Магнитные цепи постоянного тока.
	Рассматриваемые вопросы.
	- основные величины, характеризующие магнитное поле;
	- ферромагнитные материалы;

No	
п/п	Тематика лекционных занятий / краткое содержание
	- основные уравненияи методы, используемые при расчете магнитных цепей постоянного тока;
	- аналонии между эле5ктрическими и магнитными величинами.
4	Цепи однофазного синусоидального тока.
7	Рассматриваемые вопросы.
	- синусоидальных ток, характеристики синусоидального тока, его получение;
	- активное сопротивление, индуктивность и емкость в цепи синусоидального тока;
	- последовательная цепь синусоидального тока;
	- мощность в цепях синусоидального тока;
	- тригонометрический способ расчета простейших цепей синусоидального тока.
5	Символический метод.
5	Рассматриваемн вопросы.
	- мнимая единица, комплексые числа, математические действия с ними;
	- представление синусоидальных функций времени в виде проекций вращающихся векторов;
	- законы Ома в комплексной форме записи и векторные диаграммы для активного сопротивления,
	- законы ома в комплексной форме записи и векторные диаграммы для активного сопротивления, индуктивного и емкостного элементов;
	- представление потенциалов и разности потенциалов на комплексной плоскости;
	- основыне методы расчета в комплексной форме записи;
	- комплексная мощность, уравнение баланса мощностей в комплексной форме;
	- расчет, векторныфе м топографические диаграммы сложных цепей.
6	Резонансные явления в электрических цепях.
U	Рассматриваемые вопросы.
	- определение резонанса;
	- резонанс напряжений, условие резонанса, векторная диаграмма, волновое сопротивление и
	добротность резанансного контура, резонансные кривые и частотные характеристики;
	- резонанс токов, условие получения, частные случаи, векторные диаграммы т частотные
	характристики, безразличный резонанс;
	- резонангсы в сложных электрических цепях.
7	Расчет цепей с взаимной индукцией.
	Рассматриваемые вопросы.
	- явление взаимоиндукции;
	- согласное и встречное включение индуктивно связанных элементов;
	- законы Кирхгофа для цепей с индуктивносвязанными элементами;
	- «развязка» магнитных связей;
	- линейный трансформатор, уравнения и веторная диаграмма, схема замещения.
8	Переходные процессы в электрических цепях. Классический метод расчета.
_	Рассматриваемые вопросы.
	- независимые и зависимые начальные значения;
	- законы коммутации;
	- принужденные и свободные составляющие переходных токов/напряжнений;
	- алгоритм расчета цепей с одним и двумя накопителями энергии.
9	Операторный метод.
-	Рассматриваемые вопросы.
	- прямое и обратное преобразования Лапласа;
	- таблица основных операторных соотношений;
	- операторные схемы замещения элементов электрической цепи;
	- основные законы теории цепей и методы расчета цепей в операторном виде;
	- теорема разложения;
	- расчет операторным методом свободных составляющих токов/напряжений.
10	Некорректные задачи. Интеграл Дюамеля. Метод переменных состояния.
- 0	Рассматриваемые вопросы.
	a a constant postportion

No	
п/п	Тематика лекционных занятий / краткое содержание
	- некорректные задачи при расчете цепей с индуктивными элементами, первый обощенный закон коммутации;
	- некорректные задачи при расчете цепей с емкостными элементами, второй обобщенный закон
	коммутации;
	- расчет электрических цепей при сложной форме воздействующего сигнала с применением
	интеграла Дюамеля;
- 1.1	- расчет переходных процессов методом переменных состояния.
11	Электрические цепи трехфазного тока.
	Рассматриваемые вопросы:
	- трехфазный система ЭДС, трехфазный генератор;
	- основные схемы соединения обмоток генератора и нагрузок;
	- расчет и векторные диаграммы простейших трехфазных цепей; - аварийные режимы в трехфазных цепях;
	- аварииные режимы в трехфазных цепях, - вращающееся магнитное поле, принцип работы синхронного и асинхронного двигателей.
12	Метод симметричных составляющих.
12	Рассматриваемые вопросы.
	- симметричные системы прямой, обратной и нулевой последовательностей;
	- разложение несимметричной системы электрических величин на симметричные составляющие;
	- сопротивление основных элементов трехфазных систем токам разных последрвательностей;
	- расчет рабочих и аварийных режимов работы трехфай цепи методом симметричных
	составляющих.
13	Несинусоидальные токи и напряжения в линейных однофазных цепях.
	Рассматриваемые вопросы.
	- разложение периодических несинусоидальных велин на гармоники;
	- расчет линейных цепей с несинусоидальными источниками;
	- коэффициенты, характеризующие форму несинусоидальной величины;
	- виды мощности в подобных цепях, мощность искажения;
	- эквивалентные синусоиды, расчет цепей с их использованием;
	- резонасные явления в таких цепях.
14	Несинусоидальное напряжение и токи в трехфазных сетях.
	Рассматриваемые вопросы.
	- особенности работы трехфазных систем, вызываемые гармониками, кратными трем;
1.5	- ферромагнитный утроитель частоты.
15	Пассивные четырехполюсники.
	Рассматриваемые вопросы.
	- 6 форм записи уравнений четырехполюсника;
	- простейшие одно-, двух- и трехэлементные четырехполюсники;
	- расчет А-коэффициентов на основе опытов холостого хода и короткого замыкания; - схемы замещения четырехполюсников и определение их параметров;
	- уравнения четырехполюсников и определение их параметров, - уравнения четырехполюсника в гиперболической форме записи, вторичные (характеристические)
	параметры четырехполюсника;
	- расчет схем с четиырехполюсниками;
	- схемы соединения четырехполюсников, обратная связь
16	Реактивные фильтры типа "К".
-	Рассматриваемые вопросы.
	- классификация фильтров по пропускаемым частотам;
	- условие реализуемости фильтра;
	- частотные характеристики фильтра нижних частот, фильтра верхних частот, полосового фильтра и
	заграждающего фильтра;
	- подбор парамеров элементов фильтра по известному сопротивлению нагрузки и полосе
	пропускангия.

No	
п/п	Тематика лекционных занятий / краткое содержание
17	Цепи с распределёнными параметрами. Гармонический режим работы.
	Рассматриваемые вопросы.
	- первичные параметры линии с распределенными параметрами (длинной линии):
	уравнения длинной линии и их решение;
	- прямая и обратная волны;
	- вторичные (характеристические) параметры длинной линии;
	- работа линии на согласованную нагрузку;
	- линия без искажений;
	- линия без потерь;
	- линия без потерь в режиме холостого хода и короткого замыкания;
	- согласование линии с нагрузкой.
18	Переходные процессы в цепях с распределенными параметрами (длинных линиях).
	Рассматриваемы вопросы.
	- уравнения линии без потерь и их решение;
	- падающая и отраженная волны в линии без потерь при переходном режиме;
	- расчет переходного процесса в линии, подключаемой к источнику, при наличии накопителдей
	энергии в начале линии;
	- расчет переходного процесса в линии, подключаемой к источнику, при наличии накопителей
	энергии в конце линии, схема Петерсена;
	- переход волны через и мимо неоднородностей;
	- переходной процесс в линии при подключении/отключении нагрузки.
19	Нелинейные электрические и магнитные цепи переменного тока.
	Рассматриваемые вопросы.
	- виды нелинейных элементов, аппроксимация их характеристик, аналитические и графические
	методы расчета цепей переменного тока с нелинейными элементами;
	- выпрямление переменного тока, основные схемы, способы сглаживания пульсаций;
	- катушка с ферромагнитным сердечником в цепи переменного тока;
	- феррорезонанс напряжений и феррорезонанс токов.
20	Переходные процессы в нелинейных цепях.
	Рассматриваемые вопросы.
	- основные особенности переходных процессов с нелинейных цепях;
	- основные методы расчета переходных процессов в нелинейных цепях (аналитический метод,
	метод метод условной линеаризации, метод кусочно-линейной аппроксимации, метод
	последовательных интервалов, метод разделения переменных, метод переменных состояния);
	- автоколебания в нелинейных цепях, период колебаний, условия их возникновения;
21	Электромагнитное поле. Электростатическое поле.
	Рассматриваемые вопросы.
	- закон Кулона;
	- напряженность и потенциал электрического поля, их связь, силовые и эквипотенциальные линии;
	- электростатическое поле в вакууме и диэлектрике, векторы поляризации и электрической
	индукции;
	- теорема Гаусса, уравнения Пуассона и Лапласа, граничные условия;
	- метод зеракальных изображений;
	- электростатическое поле точечного заряда, заряженной оси, двухпроводной линии;
22	- основные задачи электростатики.
22	Электрическое поле тока в проводящей среде.
	Рассматриваемые вопросы.
	- плотность тока и ток;
	- закон Ома, первый и второй законы Кирхгофа в дифференциальной форме, закон Джоуля-Ленца в
	дифференциальной форме;

№ п/п	Тематика лекционных занятий / краткое содержание
	- уравнение Лапласа, граничные условия;
	- аналогия между электростатическим полем и полем постоянного тока.
23	Магнитное поле постоянного тока в проводящей среде.
	Рассматриваемые вопросы.
	- закон полного тока в интегральной и дифференциальной формах;
	- закон Био – Савара – Лапласа, действие магнитного поля на проводник с током;
	- принцип непрерывности магнитого поля;
	- скаляоный и векторный магнитные потенциалы;
	- магнитное поле постоянного тока и двухпроводной линии;
	- уравнение Лапласа, граничные условия;
	- аналогии между элекростатическим полем и магнитным полем постоянного тока;
	- основные задачи расчета магнитных полей.
24	Переменное электромагнитное поле.
	Рассматриваемые вопросы:
	- векторные характеристики электромагнитного поля, материальные уравнения среды;
	- закон полного тока, токи проводимости, переноса и смещения;
	- уравнения Максвелла в интегральной и дифференциальной формах записи;
	- теорема Умова – Пойнтинга, вектор Пойнтинга.

4.2. Занятия семинарского типа.

Лабораторные работы

No	Наименование лабораторных работ / краткое содержание
Π/Π	паименование лаоораторных раоот / краткое содержание
1	Экспериментальная проверка некоторых методов расчета электрических цепей.
	В результате выполнения лабораторных работ студент получает навык:
	- проведения экспериментальных исследований;
	- обработки и анализа экспериментальных данных,
	закрепляет теоретические знания по теме лабораторного занятия.
2	Цепи однофазного синусоидального тока. Последовательное соединение активного
	и реактивного сопротивлений.
	В результате выполнения лабораторной работы студент получает навык:
	- проведения экспериментальных исследований;
	- обработки и анализа экспериментальных данных,
	закрепляет теоретические знания по теме лабораторного занятия.
3	Параллельное соединение активного и реактивного сопротивлений.
	В результате выполнения лабораторной работы студент получает навык:
	- проведения экспериментальных исследований;
	- обработки и анализа экспериментальных данных,
	закрепляет теоретические знания по теме лабораторного занятия.
4	Резонанс в последовательной электрической цепи (резонанс напряжений).
	В результате выполнения лабораторной работы студент получает навык:
	- проведения экспериментальных исследований;
	- обработки и анализа экспериментальных данных,
	закрепляет теоретические знания по теме лабораторного занятия.
5	Резонанс в параллельной электрической цепи (резонанс токов).
	В результате выполнения лабораторной работы студент получает навык:
	- проведения экспериментальных исследований;

No	
п/п	Наименование лабораторных работ / краткое содержание
	- обработки и анализа экспериментальных данных,
	закрепляет теоретические знания по теме лабораторного занятия.
6	Исследование электрических цепей со взаимной индуктивностью.
	В результате выполнения лабораторной работы студент получает навык:
	- проведения экспериментальных исследований;
	- обработки и анализа экспериментальных данных,
	закрепляет теоретические знания по теме лабораторного занятия.
7	Переходные процессы в электрических цепях с одним накопителем энергии.
	В результате выполнения лабораторной работы студент получает навык:
	- проведения экспериментальных исследований;
	- обработки и анализа экспериментальных данных,
0	закрепляет теоретические знания по теме лабораторного занятия.
8	Переходные процессы в электрических цепях с двумя накопителями энергии.
	В результате выполнения лабораторной работы студент получает навык:
	- проведения экспериментальных исследований;
	- обработки и анализа экспериментальных данных, закрепляет теоретические знания по теме лабораторного занятия.
9	Исследование трехфазной цепи с нагрузкой, соединенной звездой, при однородной
9	
	(активной) нагрузке фаз.
	В результате выполнения лабораторной работы студент получает навык:
	- проведения экспериментальных исследований;
	- обработки и анализа экспериментальных данных, закрепляет теоретические знания по теме лабораторного занятия.
10	Исследование трехфазной цепи с нагрузкой, соединенной звездой, при
10	
	неоднородной нагрузке фаз.
	В результате выполнения лабораторной работы студент получает навык:
	- проведения экспериментальных исследований; - обработки и анализа экспериментальных данных,
	закрепляет теоретические знания по теме лабораторного занятия.
11	Исследование трехфазной цепи с нагрузкой, соединенной треугольником, при
11	
	неоднородной нагрузке фаз.
	В результате выполнения лабораторной работы студент получает навык: - проведения экспериментальных исследований;
	- проведения экспериментальных исследовании, - обработки и анализа экспериментальных данных,
	закрепляет теоретические знания по теме лабораторного занятия.
12	Исследование цепи переменного тока со сталью (катушка со стальным
12	сердечником).
	В результате выполнения лабораторной работы студент получает навык:
	- проведения экспериментальных исследований;
	- проведения экспериментальных исследовании, - обработки и анализа экспериментальных данных,
	закрепляет теоретические знания по теме лабораторного занятия.
13	Исследование пассивного четырехполюсника.
	В результате выполнения лабораторной работы студент получает навык:
	- проведения экспериментальных исследований;
	- обработки и анализа экспериментальных данных,
	закрепляет теоретические знания по теме лабораторного занятия.
14	Исследование схемы замещения длинной линии.
	В результате выполнения лабораторной работы студент получает навык:
	- проведения экспериментальных исследований;
	I * · · · · · · · · · · · · · · · · · ·

$N_{\underline{0}}$	Наиманования паборатории и работ / кратков солеруация
Π/Π	Наименование лабораторных работ / краткое содержание
	- обработки и анализа экспериментальных данных,
	закрепляет теоретические знания по теме лабораторного занятия.
15	Переходные процессы в нелинейной цепи.
	В результате выполнения лабораторной работы студент получает навык:
	- проведения экспериментальных исследований;
	- обработки и анализа экспериментальных данных,
	закрепляет теоретические знания по теме лабораторного занятия.
16	Феррорезонансы. Феррорезонанс напряжений. Феррорезонанс токов.
	В результате выполнения лабораторных работ студент получает навык:
	- проведения экспериментальных исследований;
	- обработки и анализа экспериментальных данных,
	закрепляет теоретические знания по темам лабораторных занятий.
17	Лабораторные учебно-исследовательские работы по индивидуальной тематике.
	В результате выполнения лабораторной учебно-исследовательской работы студент получает навык:
	- самостоятельного изучения дополнительной литературы по выбранной тематике;
	- опыт самостоятельной постановки задач, разработки плана исследований;
	- проведения экспериментальных исследований;
	- обработки и анализа экспериментальных данных,
	закрепляет теоретические знания по выбранной им самостоятельно тематике.
	T

Практические занятия

$N_{\underline{0}}$	Тематика практических занятий/краткое содержание
Π/Π	тематика практи теских запитии краткое содержание
1	Расчет входных сопротивлений последовательно-параллельных цепей.
	В результате работы на практическом занятии студент получает навык:
	- определения эквивалентных сопротивлений простейших цепей;
	- преобразования схем с целью их упрощения;
	- расчета простейших цепей с использованием эквивалентных преобразлваний.
2	Законы Кирхгофа. Потенциальные диаграммы.
	В результате работы на практическом занятии студент получает навык:
	- расчета электрических схем постоянного тока по законам Кирхгофа;
	- построения и анализа потенциальных диаграмм.
3	Метод узловых потенциалов. Метод двух узлов. Баланс мощностей.
	В результате работы на практическом занятии студент получает навык:
	- расчета электрических схем постоянного тока методом узловых потенциалов;
	- проверки выполненных расчетов балансом мощностей.
4	Метод контурных токов. Метод наложения. Входные и взаимные проводимости.
	В результате работы на практическом занятии студент получает навык:
	- расчета электрических схем постоянного тока методом контурных токов;
	- расчета электрических схем постоянного тока методом наложения;
	- расчета входных и взаимных проводимостей ветвей.
5	Метод эквивалентного генератора.
	В результате работы на практическом занятии студент получает навык:
	- расчета электрических схем постоянного тока методом эквивалентного генератора;
	- решения задачи передачи максимума активной мощности от активного двухполюсника к нагрузке.
6	Расчет нелинейных электрических цепей постоянного тока.
	В результате работы на практическом занятии студент получает навык:

$N_{\underline{0}}$	
п/п	Тематика практических занятий/краткое содержание
11/11	- расчета нелинейных цепей постоянного тока методом эквивалентного генератора;
	- расчета нелинейных цепей постоянного тока методом эквивалентного тенератора, - расчета нелинейных цепей постоянного тока методом двух узлов.
7	Расчет магнитных цепей постоянного тока.
-	В результате работы на практическом занятии студент получает навык:
	- построения вебер-амперных характеристик участков магнитной цепи;
	- расчета неразветвленных магнитных цепей (прямая и оратная задачи);
	- расчета разветвленной магнитной цепи методом двух узлов.
8	Расчет простейших цепей синусоидального тока (тригонометрический метод).
	В результате работы на практическом занятии студент получает навык:
	- расчета простейших цепей синусоидального тока с использованием компонентных уравнений и
	тригонометричесий соотношений;
	- расчета показний измерительных приборов.
	Символический метод расчета цепей синусоидального тока.
	В результате работы на практическом занятии студент получает навык:
	- выполнения математических операций с комплексными числами;
	- расчета цепей синусоидального тока символическим методом.
10	Векторные и топографические диаграммы. Баланс мощностей в комплексной
	форме.
	В результате работы на практических занятиях студент получает навык:
	- построения и анализа векторных и топографических диаграмм для цепей синусоидального тока;
	- проверки правильности выполненных символическим методом расчетов балансом мощностей,
	записанным в комплексной форме.
11	Резонанс напряжений. Резонанс токов.
	В результате работы на практических занятиях студент получает навык:
	- расчета и анализа резонансных явлений в последовательной цепи;
	- расчета и анализа резонансных явлений в параллельной цепи;
	- определения условий врозникновения резонанса в сложной цепи.
	Расчет разветвленной цепи синусоидального тока с взаимоиндукцией.
	В результате работы на практических занятиях студент получает навык:
	- расчета и анализа простейших цепей со взаимоиндуктивным влиянием (последовательных цепей,
	цепей с параллельными ветвями с индуктивностями);
	- расчета и анализа сложных цепей со взаимоиндуктивным влиянием;
	- построения и анализа векторных и топографических диаграмм для таких цепей;
	- расчет схем с линейными трансформаторами.
	Классический метод расчета переходных процессов.
	В результате работы на практических занятиях студент получает навык:
	- расчета и анализа переходных процессов в линейных электрических цепях с одним накопителем и
	постоянными источниками; - расчета и анализа переходных процессов в линейных электрических цепях с одним накопителем и
	- расчета и анализа переходных процессов в линеиных электрических цепях с одним накопителем и синусоидальными источниками;
	- расчета и анализа переходных процессов в линейных электрических цепях с двумя накопителями;
	- определения основных параметров переходного процесса по известным параметрам элементов
	электрический цепи и решения обратной задачи;
	- решения «некорректных» задач на переходные процессы с использованием обобщенных законов
	коммутации.
	Операторный метод расчета переходных процессов.
	В результате работы на практических занятиях студент получает навык:
	- расчета и анализа переходных процессов в линейных электрических цепях с одним и двумя
	накопителями и постоянными источниками;
	- расчета и анализа переходных процессов в линейных электрических цепях с одним и двумя

No			
п/п	Тематика практических занятий/краткое содержание		
	накопителями и синусоидальными источниками;		
	- расчета и анализа переходных процессов в линейных электрических цепях с одним и двумя		
	накопителями и источниками сигнала сложной формы.		
15	Расчет переходных процессов с применением интеграла Дюамеля.		
	В результате работы на практическом занятии студент получает навык:		
	- расчета и анализа переходных процессов в линейных электрических цепях с одним и двумя		
	накопителями и источниками сигнала сложной, прерывистой формы.		
16	«Некорректные» задачи при расчете переходных процессов.		
	В результате работы на практическом занятии студент получает навык:		
	- решения «некорректных» задач на переходные процессы классическим методом с использованием		
	обобщенных законов коммутации;		
	- решения «некорректных» задач на переходные процессы операторным методом.		
17	Расчет переходных процессов методом переменных состояния.		
	В результате работы на практическом занятии студент получает навык:		
	- составления систем уравнений, используемых при анализе переходных процессов в электрических		
	цепях «машинными» методами.		
18	Линейные электрические цепи при несинусоидальных воздействиях.		
	В результате работы на практическом занятии студент получает навык:		
	- расчета установившихся режимов в линейных электрических цепях с источниками периодических		
	сигналов несинусоидальной формы;		
	- расчета показаний измерительных приборов, используемых в таких цепях.		
19	Трехфазные электрические цепи. Нормальные и аварийные режимы работы.		
	В результате работы на практических занятиях студент получает навык:		
	- расчета и анализа рабочих режимов в простейших трехфазных цепях с нагрузкой, соединенной		
	«звездой» или «треугольником»;		
	- расчета и анализа аварийных режимов в простейших трехфазных цепях с нагрузкой, соединенной		
	«звездой» или «треугольником»;		
20	- расчета сложных трехфазных цепей.		
20	Матрично-топологический метод расчета сложных электрических цепей.		
	В результате работы на практических занятиях студент получает навык:		
	- составления матричных уравнений электрической цепи топологическими методами, с		
	использованием узловой матрицы (матрицы счений) и матрицы соединений;		
	- составления матричных уравнений для расчета цепи методами контурных токов и узловых потенциалов, реализыемыми на компьютерной технике.		
21			
21	Несинусоидальные напряжения и токи в трехфазных цепях. В результате работы на практических занятиях студент получает навык:		
	- расчета и анализа режимов работы трехфазных цепей с источниками сигнала периодической, но		
	несинусоидальной формы;		
	- расчета показаний измерительных приборов в таких цепях.		
22	Гармонический режим в линии с распределенными параметрами (длинной линии).		
	В результате работы на практических занятиях студент получает навык:		
	- расчета вторичных и первичных параметров линии;		
	- расчета входного сопротивления линии, к которой подключена нагрузка;		
	- расчета дополнительных индуктивностей, обеспечивающих передачу сигнала по линии без		
	искажений;		
	- расчета и анализа процессов в электричкой цепи, содержащей длинную линию, с использованием		
	уравнений линии, записываемых в различных оптимальных формах для различных режимов работы		
	линии.		
23	Расчет переходных процессов в длинной линии.		
	В результате работы на практических занятиях студент получает навык:		

No			
п/п	Тематика практических занятий/краткое содержание		
	- расчета и анализа переходных процессов в линиях, подключаемых к источнику, при наличии		
	накопителдей энергии в начале линии;		
	- расчета и анализа переходных процессов в линиях, подключаемых к источнику, при наличии		
	накопителей энергии в конце линии, с использованием схемы Петерсена;		
	- расчета и анализа процессов, происходящих при переходе волны с одной линии на вторую при		
	наличии неоднородностей в месте перехода;		
	- расчета и анализа переходных процессов в линии при подключении/отключении нагрузки.		
24	Нелинейные цепи переменного тока.		
	В результате работы на практических занятиях студент получает навык:		
	- выполнения аппросимаций нелинейных характеристик;		
	- навыки расчета схем с нелинейными резистивными элементами, инерциоными и		
	безинерционными.		
25	Схемы выпрямления переменного тока.		
	В результате работы на практических занятиях студент получает навык:		
	- расчета параметров простейших схем выпрямления переменного тока;		
	- навыки расчета коэффициентов, характеризующих качество выпрямления.		
26	Цепь переменного тока с элементами, обладающими нелинейной вебер-амперной		
	характеристикой (катушка со стальным сердечником, обмотка трансформатора).		
	В результате работы на практических занятиях студент получает навык:		
	- определения параметров схем замещения катушки с ферромагнитным сердечником;		
	- расчета и анализа процессов, происходящих в цепях с подобными элементами.		
27	Феррорезонансы.		
	В результате работы на практических занятиях студент получает навык:		
	- расчета и анализа процессов в последовательной феррорезонансной цепи;		
	- расчета и анализа процессов в параллельной феррорезонансной цепи;		
28	Переходные процессы в нелинейных цепях.		
	В результате работы на практических занятиях студент получает навык:		
	- расчета и анализа переходных процессов в нелинейной электрической цепи методом		
	интегрируемой аналитической аппроксимации;		
	- расчета и анализа переходных процессов в нелинейной электрической цепи методами условной		
	линеаризации и кусочно-линейной аппроксимации; - составления уравнений для расчета переходного процесса в нелинейной электрической цепи		
	методом переменных состояния.		
29	Электростатическое поле.		
2)	В результате работы на практических занятиях студент получает навык:		
	- расчета и анализа простейших электростатических полей – поля точечного заряда, поля		
	заряженной оси, поля двухпроводной линии, поля заряженного шара и др.;		
	- применения метода зеркальных изображений.		
30	Поле постоянного тока в проводящей среде.		
	В результате работы на практических занятиях студент получает навык:		
	- расчета и анализа электрического поля тока в вакууме и в проводящей среде;		
	- расчета напряжения прикосновения и шагового напряжения, вызванногго стеканием тока с		
	фундамента опоры при коротком замыкании на нее;		
	- расчета электрической емкости простейших накопителей энергии.		
31	Магнитное поле постоянного тока.		
	В результате работы на практических занятиях студент получает навык:		
	- расчета и анализа магнитного поля проводника с током;		
	- расчета и анализа магнитного поля двухпроводной линии;		
	- определения пути магнитных силовых линий в воздушных зазорах и магнитного потока в		

№ п/п	Тематика практических занятий/краткое содержание
	воздущной дыре;
	- определения индуктивности и взаимной индуктивности катушек.
32	Переменное электромагнитное поле.
	В результате работы на практических занятиях студент получает навык:
	- раскрытия операция взятия дивергенции и ротора в дкартовой системе координат;
	- применения уравнений Максвелла при решении задач электротехники;
	- вычисления величины и определения направления вектора Пойнтинга для одиночного провода,
	двухпроводной линии.

4.3. Самостоятельная работа обучающихся.

No	Вил самостоятали ной работи	
Π/Π	Вид самостоятельной работы	
1	подготовка к лабораторным работам	
2	подготовка к практическим занятиям	
3	работа с лекционным материалом и литературой	
4	Выполнение расчетно-графической работы.	
5	Подготовка к промежуточной аттестации.	
6	Подготовка к текущему контролю.	

4.4. Примерный перечень тем расчетно-графических работ Примерный перечень тем (вариантов задания) РГР приведен в Приложении1.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Атабеков, Г. И. Основы теории цепей / Г. И. Атабеков. — 7-е изд., стер. — Санкт-Петербург : Лань, 2022. — 424 с. — ISBN 978-5-507-45036-7.	https://e.lanbook.com/book/256100 (дата обращения: 31.01.2024).
2	Аполлонский, С. М. Теоретические основы электротехники. Электромагнитное поле: учебное пособие / С. М. Аполлонский. — Санкт-Петербург: Лань, 2022. — 592 с. — ISBN 978-5-8114-1155-9.	https://e.lanbook.com/book/210824 (дата обращения: 31.01.2024).
3	Теоретические основы электротехники. Нелинейные электрические цепи. Электромагнитное поле: учебное пособие / Г. И. Атабеков, С. Д. Купалян, А. Б. Тимофеев, С. С.	https://e.lanbook.com/book/134338 (дата обращения: 31.01.2024).

	Хухриков; под редакцией Г. И. Атабекова. — 7-е	
	изд., стер. — Санкт-Петербург : Лань, 2020. — 432	
	c. — ISBN 978-5-8114-5176-0.	
4	Сборник задач по основам теоретической	https://e.lanbook.com/book/210608
	электротехники: учебное пособие / под редакцией	(дата обращения: 31.01.2024).
	Ю.А. Бычкова [и др.]. — Санкт-Петербург : Лань,	
	2022. — 400 c.	
5	Потапов, Л. А. Теоретические основы	https://e.lanbook.com/book/212393
	электротехники: краткий курс: учебное пособие /	(дата обращения: 31.01.2024).
	Л. А. Потапов. — Санкт-Петербург : Лань, 2022.	
	— 376 c. — ISBN 978-5-8114-2089-6.	
6	Аполлонский, С. М. Основы электротехники.	https://e.lanbook.com/book/340016
	Практикум / С. М. Аполлонский. — 3-е изд., стер.	(дата обращения: 31.01.2024).
	— Санкт-Петербург : Лань, 2023. — 320 с. —	
	ISBN 978-5-507-47193-5.	
7	Теоретические основы электротехники: учебно-	https://e.lanbook.com/book/175716
	методическое пособие / С. П. Власов, В. В.	(дата обращения: 31.01.2024).
	Волынцев, Б. И. Косарев, Е. В. Кручинин. —	
	Москва: РУТ (МИИТ), 2019 — Часть 1:	
	Линейные электрические цепи постоянного и	
	синусоидального тока — 2019. — 36 с.	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (https://miit.ru/);

Информационный портал Научная электронная библиотека eLIBRARY.RU (www.elibrary.ru);

Научно-техническая библиотека РУТ (МИИТ) (http://library.miit.ru)

Российская Государственная Библиотека (http://www.rsl.ru);

Электронно-библиотечная система издательства «Лань» (https://elanbook.com/);

Образовательная платформа «Юрайт» (https://urait.ru/).

- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).
 - 1. Операционная система Microsoft Windows;
 - 2. Microsoft Office;
 - 3. ЭИОС РУТ МИИТ;
 - 4. Microsoft Teams;

- 5. электронная почта;
- 6. Hiper Scientific Calculator;
- 7.Mathcad.
- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).
- 1.Учебные аудитории для проведения занятий лекционного типа, оснащенные компьютерной техникой и набором демонстрационного оборудования.
- 2. Учебные аудитории для проведения практических занятий, оснащенные меловой или маркерной доской или компьютерной техникой и набором демонстрационного оборудования.
- 3.Помещения для проведения лабораторных работ, оснащенные специализированными лабораторными стендами с набором необходимого оборудования для изучения линейных и нелинейных цепей постоянного и переменного токов, переходных процессов в электрических цепях и в длинных линиях.
 - 9. Форма промежуточной аттестации:

Зачет во 2, 3 семестрах.

Экзамен в 4 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, доцент, к.н. кафедры

«Электроэнергетика транспорта» А.В. Симаков

Согласовано:

Заведующий кафедрой ЭЭТ М.В. Шевлюгин

Председатель учебно-методической

комиссии С.В. Володин