МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 15.03.06 Мехатроника и робототехника, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Теория автоматического управления

Направление подготовки: 15.03.06 Мехатроника и робототехника

Направленность (профиль): Электрооборудование и электропривод

подвижного состава

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 610876

Подписал: заведующий кафедрой Григорьев Павел

Александрович

Дата: 27.06.2025

1. Общие сведения о дисциплине (модуле).

Целями освоения дисциплины (модуля) являются:

- формирование широкого круга знаний основных принципов и закономерностей САУ как одной из важнейших интернаучных дисциплин, позволяющей описать и изучить основные особенности функционирования САУ;
- обучение общим принципам и конкретным методам построения и исследования систем управления и регулирования.

Задачами дисциплины (модуля) являются:

- исследование статических и динамических свойств САУ;
- синтез систем САУ;
- формирование у обучающегося компетенций в данной области, необходимых при работе с САУ.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-11** Способен разрабатывать и применять алгоритмы и современные цифровые программные методы расчетов и проектирования отдельных устройств и подсистем мехатронных и робототехнических систем с использованием стандартных исполнительных и управляющих устройств, средств автоматики, измерительной и вычислительной техники в соответствии с техническим заданием, разрабатывать цифровые алгоритмы и программы управления робототехнических систем;
- **ПК-5** Способен осуществлять подготовку текстовой и графической частей эскизного и технического проектов электропривода и электрооборудования ПСЖД.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- типовые звенья САУ и их характеристики;
- программы и алгоритмы управления.

Уметь

- правильно выбирать класс системы управления и разрабатывать ее общую конфигурацию;
 - составлять математическое описание САУ;

- осуществлять анализ устойчивости и качества САУ.

Владеть:

- методами получения основных временных и частотных характеристик САУ;
 - приемами преобразования структурных схем САУ;
 - навыками исследования статических и динамических свойств САУ.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 6 з.е. (216 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

		Количество часов	
Тип учебных занятий	Всего	Семестр	
		№ 4	№5
Контактная работа при проведении учебных занятий (всего):	144	80	64
В том числе:			
Занятия лекционного типа	64	32	32
Занятия семинарского типа	80	48	32

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 72 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).

4.1. Занятия лекционного типа.

No		
п/п	Тематика лекционных занятий / краткое содержание	
1	Основные понятия и общие принципы построения автоматических систем.	
	Рассматриваемые вопросы:	
	- понятие САУ, объект управления и т.д.;	
	- основные задачи автоматического управления;	
	- понятие о замкнутых автоматических системах;	
	- принципы построения САУ.	
2	Принципы управления.	
	Рассматриваемые вопросы:	
	- принцип разомкнутого управления;	
	- принцип компенсации;	
	- принцип обратной связи.	
3	Динамические характеристики систем.	
	Рассматриваемые вопросы:	
	- режимы работы САУ;	
	- типовые внешние воздействия (ступенчатое, импульсное и т.д.)	
	- временные и частотные характеристики;	
	- амплитудно-фазовая частотная характеристика.	
4	Динамические звенья и их характеристики.	
	Рассматриваемые вопросы:	
	- пропорциональное звено и его характеристики;	
	- интегрирующее звено и его характеристики;	
	- дифференцирующее звено и его характеристики	
	- колебательное звено и его характеристики;	
	- форсирующее звено и его характеристики.	
5	Составление исходных дифференциальных уравнений САУ.	
	Рассматриваемые вопросы:	
	- передаточные функции САУ; - использование структурных схем;	
	- уравнения следящей системы.	
6	Критерии устойчивости. Алгебраические критерии.	
U		
	Рассматриваемые вопросы: - общие понятия об устойчивости;	
	- сощие понятия со устоичивости,	
	- критерий Гауса,	
7	Устойчивость линейных систем. Графические критерии.	
,	Рассматриваемые вопросы:	
	- построение областей устойчивости D-разбиение;	
	- критерий Михайлова;	
	- критерий Найквиста;	
	- определение устойчивости по логарифмическим частотным характеристикам;	
	- устойчивость систем с запаздыванием.	
8	Построение кривой переходного процесса в САУ.	
	Рассматриваемые вопросы:	
	- непосредственное решение исходного дифференциального уравнения;	
	- сведения неоднородного уравнения к однородному;	
	- использование преобразований Фурье, Лапласа; Карсона-Хевисайда.	

No			
Π/Π	Тематика лекционных занятий / краткое содержание		
9	Понятие качества регулирования.		
	Рассматриваемые вопросы:		
	- быстродействие системы;		
	- оценка переходного процесса при ступенчатом воздействии;		
10	- оценка переходного процесса при периодических возмущениях.		
10	Оценка качества управления.		
	Рассматриваемые вопросы:		
	- точность в типовых режимах; - коэффициенты ошибок.		
1.1	- коэффициенты ошибок.		
11	Оценка качества переходных процессов по частотным характеристикам. Корне		
	методы качества.		
	Рассматриваемые вопросы:		
	- определение запаса устойчивости и быстродействия по переходной характеристике;		
	- корневые методы оценки качества;		
	- интегральные оценки;		
	- частотные критерии качества.		
12	Чувствительность САУ.		
	Рассматриваемые вопросы:		
	- функции чувствительности временных характеристик;		
	- функции чувствительности критериев качества.		
13	Повышение точности САУ.		
	Рассматриваемые вопросы:		
	- повышение порядка астатизма;		
	- применение изодромных устройств;		
	- теория инвариантности;		
	- комбинированное управление;		
1.4	- неединичные обратные связи.		
14	Улучшение качества процесса управления.		
	Рассматриваемые вопросы:		
	- корректирующие средства;		
	- последовательные корректирующие средства;		
	- параллельные корректирующие средства;- обратные связи.		
15	•		
15	Методы повышения запаса устойчивости.		
	Рассматриваемые вопросы:		
	- демпфирование с подавлением высоких частот;- демпфирование с поднятием высоких частот;		
	- демпфирование с поднятием высоких частот, - демпфирование с подавлением средних частот;		
	- демпфирование с введением отрицательных фазовых сдвигов.		
16	Случайные процессы в САУ.		
	Рассматриваемые вопросы:		
	- случайные процессы;		
	- случаиные процессы; - стационарные случайные процессы;		
	- стационарные случаиные процессы, - корреляционная функция;		
	- корреляционная функция, - спектральная плотность стационарных процессов.		
17	Оптимизация САУ.		
• '	Рассматриваемые вопросы:		
	- постановка задачи оптимального управления;		
	- критерии оптимизации;		
	- принцип максимума Понтрягина;		
	1 -		

№ п/п	Тематика лекционных занятий / краткое содержание	
	- метод динамического программирования;	
	- аналитическое конструирование систем автоматического управления;	
	- сравнительная характеристика методов оптимального управления.	

4.2. Занятия семинарского типа.

Лабораторные работы

No	лаоораторные расоты 	
п/п	Наименование лабораторных работ / краткое содержание	
1	Системы пропорционального регулирования с задержкой 1-го порядка.	
	В результате выполнения лабораторной работы рассматриваются системы пропорционального	
	регулирования с задержкой 1-го порядка; строятся кривые отклика на ступенчатое воздействие,	
	определяются значения соответствующих параметров по осциллограммам.	
2	Системы пропорционального регулирования с задержкой 3-го порядка.	
	В результате выполнения лабораторной работы рассматриваются системы пропорционального	
	регулирования с задержкой 3-го порядка, строятся кривые отклика на ступенчатое воздействие,	
	определяются значения соответствующих параметров по осциллограммам.	
3	Системы регулирования интегрирующего типа.	
	В результате выполнения лабораторной работы рассматривается схема регулирования	
	интегрирующего типа; строятся кривые отклика на ступенчатое воздействие, определяются	
	значения соответствующих параметров по осциллограммам.	
4	П-регулятор. ПИ-регулятор.	
	В результате выполнения лабораторной работы рассматриваются схемы П-регулятор. ПИ-	
	регулятор, строятся е кривые отклика на ступенчатое воздействие, определяются значения	
_	соответствующих параметров по осциллограммам.	
5	ПД-регулятор. ПИД-регулятор.	
	В результате выполнения лабораторной работы рассматриваются схемы ПД-регулятор. ПИД-	
	регулятор, строятся е кривые отклика на ступенчатое воздействие, определяются значения соответствующих параметров по оснишлограммам	
6	соответствующих параметров по осциллограммам. Двухпозиционный регулятор.	
U	В результате выполнения лабораторной работы изучается влияние ширины зоны	
	нечувствительности и дополнительной задающей переменной на переключательное действие	
	двухпозиционного регулятора.	
7	Система с объектом типа П-Т3, управляемым ПИД-регулятором.	
,	В результате выполнения лабораторной работы рассматривается система с объектом типа П-Т3,	
	управляемым ПИД-регулятором, строятся кривые отклика на единичный скачок задающей	
	переменной, определяются значения соответствующих параметров по осциллограммам.	
8	Система с объектом типа П-Т1, управляемым двухпозиционным регулятором.	
	В результате выполнения лабораторной работы изучается влияние задающей переменной на	
	быстродействие системы с объектом типа П-Т1, управляемым двухпозиционным регулятором, а	
	также влияние ширины зоны нечувствительности на быстродействие системы с объектом типа П-	
	Т1, управляемым двухпозиционным регулятором.	
9	Система с объектом типа П-Т3, управляемым П- и ПД-регулятором.	
	В результате выполнения лабораторной работы изучается быстродействие системы при различных	
	коэффициентах передачи и времени интегрирующего действия при использовании П- и	
	ПДрегулятора для управления объектом типа П-Т3.	
10	Система с объектом типа П-Т3, управляемым двухпозиционным регулятором.	
	В результате выполнения лабораторной работы изучается влияние задающей переменной и ширины	

No	Наименование лабораторных работ / краткое содержание		
Π/Π			
	зоны нечувствительности двухпозиционного регулятора на быстродействие системы с объектом типа П-Т3.		
11	1 Система с объектом типа П-Т3, управляемым двухпозиционным регулятором		
	обратной связью.		
	В результате выполнения лабораторной работы рассматривается система с объектом типа 1		
	управляемым двухпозиционным регулятором с обратной связью, строятся графики		
12	изменения регулируемой переменной Ux.		
12	Система с объектом И-типа без дополнительной задержки и с дополнительной задержкой, управляемым П-регулятором.		
	В результате выполнения лабораторной работы рассматривается обзор связей в системе с объектом		
	И-типа без задержки, управляемым П-регулятором, управление объектом И-типа без задержки и с		
	задержкой при различных коэффициентах передачи П-регулятора.		
13	Моделирование цепи позиционирования в станках с ЧПУ.		
	В результате выполнения лабораторной работы рассматривается поведение объекта И-типа с		
	задержкой, управляемого П-регулятором.		
14	Оптимизация регулятора на основе отклика на ступенчатое воздействие по Чену,		
	Хроунсу и Ресвику.		
	В результате выполнения лабораторной работы рассматривается метод оптимизации регулятора по		
	Чену, Хроунсу и Ресивку, который основан на изменении коэффициента передачи системы		
1.5	регулирования по отклику на ступенчатое воздействие.		
15	15 Оптимизация регулятора на основе его критических настроек по Зиглеру и		
	Николсу.		
	В результате выполнения лабораторной работы рассматриваются эксперименты, связанные с исследованием временных и частотных характеристик регулирующей цепи.		
16			
10	Регулирование частоты вращения электродвигателя. В результате выполнения лабораторной работы исследуется регулирование по частоте вращения		
	двигателя без регулирования по току.		
17	Регулирование напряжения с помощью машинного генератора.		
	В результате выполнения лабораторной работы:		
	- в измерительной серии 1 исследуется статика генератора и его внутреннее сопротивление;		
	- в измерительной серии 2 исследуется динамика системы с П- и ПИ-регулятором.		
18	Регулирование частоты вращения с помощью каскадного регулирования тока.		
	В результате выполнения лабораторной работы рассматривается способ совместного регулирования		
10	по частоте вращения и по току, используемый в большинстве исполнительных приводов.		
19	Диаграмма Боде, годограф и устойчивость системы П-Т3.		
20	В результате выполнения лабораторной работы проводится построение диаграммы Боде для САУ.		
20	Сбор и сглаживание действительных значений.		
	В результате выполнения лабораторной работы исследуются возможности и ограничения г сглаживания на примерах исследования тока двигателя и сигнала тахогенератора панели		
	«Электропри вод постоянного тока».		
21	Параметры и работа системы с сервоуправлением.		
	В результате выполнения лабораторной работы исследуются характеристики систем позиционного		
	управления.		
22	Позиционирование.		
	В результате выполнения лабораторной работы проводится исследование взаимосвязей между		
	переменными процесса и ознакомление с рекомендациями по выбору регуляторов.		

№ π/π	Наименование лабораторных работ / краткое содержание	
23	Позиционирование при наличии возмущающих факторов.	
	В результате выполнения лабораторной работы выполняются исследования, которые направлены на	
	то, чтобы показать, как возмущающие факторы влияют на управляемость исполнительной системы.	

П

	Практические занятия	
No	Тематика практических занятий/краткое содержание	
Π/Π	темитики прикти теских запятим криткое содержитие	
1	Передаточные функции типовых звеньев.	
	В результате выполнения практического занятия проводится вывод формул передаточных функций	
	типовых элементарных звеньев: пропорционального, апериодического, интегрирующего и	
	дифференцирующего, а также звена второго порядка.	
2	Переходная функция в общем виде. h(t) типовых звеньев.	
	В результате выполнения практического занятия проводится вывод формул переходных функций	
	пропорционального, апериодического, интегрирующих и дифференцирующих звеньев.	
3	Частотные характеристики типовых звеньев.	
	В результате выполнения практического занятия проводится вывод формул частотных	
	характеристик и построение их графиков по характерным точкам для типовых элементарных	
	звеньев.	
4	ЛАЧХ типовых звеньев.	
	В результате выполнения практического занятия проводится построение графиков ЛАЧХ по	
	характерным точкам для типовых элементарных звеньев.	
5	Передаточные функции соединений звеньев.	
	В результате выполнения практического занятия проводится вывод формул W(р)	
	последовательного, параллельного соединения и соединения с обратной связью.	
6	Устойчивость линейных систем.	
	В результате выполнения практического занятия изучается терминология в области устойчивости.	
7	Алгебраические критерии устойчивости линейных систем.	
	В результате выполнения практического занятия изучаются критерии устойчивости Гурвица и	
8	Линара-Шипара. Частотные критерии устойчивости линейных систем.	
0		
	В результате выполнения практического занятия изучается критерий устойчивости Михайлова.	
9	Построение областей устойчивости.	
	В результате выполнения практического задания выполняется построение кривых D-разбиения по неизвестным параметрам и находится область устойчивости.	
10		
10	Построение переходных процессов в линейных системах автоматического	
	управления.	
	В результате выполнения практического занятия проводится построение переходного процесса	
11	системы методом трапеций.	
11	Параметрический синтез линейных систем регулирования корневым методом.	
	В результате выполнения практического занятия определяются параметры настройки регулятора в	
12	одноконтурной системе регулирования.	
12	Автоматические системы регулирования при случайных воздействиях. В результате выполнения практического занятия определяется дисперсия выходного сигнала	
	системы и осуществляется синтез оптимального регулятора, минимизирующего дисперсию ошибки	
	регулирования.	
13	Системы с компенсацией возмущений.	
13	В результате выполнения практического занятия определяются параметры настройки	
	компенсирующего звена.	
	A-V 1	

№ п/п	Тематика практических занятий/краткое содержание	
14	Метод гармонического баланса.	
	В результате выполнения практического занятия оценивается возможность и устойчивость	
	автоколебаний в системе и определяются их параметры.	
15	Импульсные системы.	
	В результате выполнения практического занятия проводится получение импульсной передаточной	
	функции разомкнутой системы.	
16	Анализ и синтез мехатронных модулей движения как цифровых электроприводов с	
	обратными связями.	
	В результате выполнения практического занятия для заданной САУ, используя ПО SimInTech,	
	рассчитывается АЧХ замкнутой системы и на основе результатов расчета определяется её частота	
	пропускания.	

4.3. Самостоятельная работа обучающихся.

No	Рин сомостоятаниюй реботи	
Π/Π	Вид самостоятельной работы	
1	Изучение электронных материалов курса и учебной литературы.	
2	Текущая подготовка к практическим занятиям.	
3	Изучение дополнительной литературы.	
4	Выполнение расчетно-графической работы.	
5	Подготовка к промежуточной аттестации.	
6	Подготовка к текущему контролю.	

- 4.4. Примерный перечень тем расчетно-графических работ
- 1. Составление и преобразование структурной схемы. Предварительное исследование САР.
 - 2. Нахождение передаточной функции разомкнутой системы.
- 3. Построение асимптотической ЛАЧХ, ЛФЧХ, АФХ разомкнутой системы.
 - 4. Определение устойчивости САУ по критерию Гурвица.
 - 5. Определение устойчивости САУ по критерию Найквиста.
 - 6. Определение устойчивости САУ по критерию Михайлова.
- 7. Определение запаса устойчивости и быстродействия САУ по переходной характеристике.
 - 8. Определение запаса устойчивости САУ по амплитуде.
 - 9. Определение запаса устойчивости САУ по фазе.
 - 10. Повышение точности САУ.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Герман-Галкин, С. Г. Модельное проектирование мехатронных модулей SimInTech / С. Г. Герман-Галкин, Б. А. Карташов, С. Н. Литвинов; под общей редакцией А. Н. Петухова. — Москва: ДМК Пресс, 2021. — 494 с. — ISBN 978-5-97060-693-3.	URL: https://e.lanbook.com/book/190723 (дата обращения: 13.04.2023) Текст: электронный.
2	Музылева, И. В. Элементарная теория линейных систем в задачах и упражнениях : учебное пособие для вузов / И. В. Музылева. — 2-е изд., стер. — Санкт-Петербург : Лань, 2022. — 428 с. — ISBN 978-5-507-44723-7.	URL: https://e.lanbook.com/book/254708 (дата обращения: 13.04.2023) Текст: электронный.
3	Первозванский, А. А. Курс теории автоматического управления / А. А. Первозванский. — 6-е изд., стер. — Санкт-Петербург : Лань, 2023. — 616 с. — ISBN 978-5-507-47043-3.	URL: https://e.lanbook.com/book/322499 (дата обращения: 13.04.2023) Текст: электронный.
4	Коновалов, Б. И. Теория автоматического управления: учебное пособие для вузов / Б. И. Коновалов, Ю. М. Лебедев. — 6-е изд., стер. — Санкт-Петербург: Лань, 2022. — 220 с. — ISBN 978-5-507-44643-8.	URL: https://e.lanbook.com/book/238508 (дата обращения: 13.04.2023) Текст: электронный.
5	Ефанов, А. В. Теория автоматического управления / А. В. Ефанов, В. А. Ярош. — 2-е изд., стер. — Санкт-Петербург: Лань, 2023. — 160 с. — ISBN 978-5-507-45647-5.	URL: https://e.lanbook.com/book/277061 (дата обращения: 13.04.2023) Текст: электронный.

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (https://www.miit.ru/)

Научно-техническая библиотека РУТ (МИИТ) (http:/library.miit.ru)

Образовательная платформа «Юрайт» (https://urait.ru/)

Общие информационные, справочные и поисковые «Консультант Плюс» (http://www.consultant.ru/)

«Гарант» (http://www.garant.ru/)

Главная книга (https://glavkniga.ru/)

Электронно-библиотечная система издательства (http://e.lanbook.com/)

Электронно-библиотечная система ibooks.ru (http://ibooks.ru/)

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Microsoft Office (Word, Excel); MatLab Simulink; SimInTech; Codesys.

- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).
- 1. Рабочее место преподавателя с персональным компьютером, подключённым к сетям INTERNET.
- 2. Программное обеспечение для создания текстовых и графических документов, презентаций.
- 3. Специализированная лекционная аудитория с мультимедиа аппаратурой.
 - 4. Для проведения тестирования: компьютерный класс.
- 5. Специализированная аудитория для выполнения лабораторных работ, оснащенная испытательными стендами, оборудованная рабочими столами, электрическими розетками, компьютером, проектором и экраном, и доступом в интернет. Компьютерные обучающие программы (выполнение лабораторных работ).
- 6. Специализированная аудитория для выполнения лабораторных работ, оснащенная испытательными стендами, оборудованная рабочими столами, электрическими розетками, компьютером, проектором и экраном, и доступом в интернет.
 - 7. Для проведения тестирования: компьютерный класс.
 - 9. Форма промежуточной аттестации:

Зачет в 4 семестре.

Экзамен в 5 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, доцент, к.н. кафедры «Наземные транспортнотехнологические средства»

М.Ю. Чалова

доцент, к.н. кафедры «Наземные транспортно-технологические средства»

П.А. Григорьев

Согласовано:

Заведующий кафедрой НТТС

П.А. Григорьев

Председатель учебно-методической

комиссии С.В. Володин