### МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

### ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

# «РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)



Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 09.03.02 Информационные системы и технологии, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

## РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

#### Теория вероятностей и математическая статистика

Направление подготовки: 09.03.02 Информационные системы и

технологии

Направленность (профиль): Технологии искусственного интеллекта в

транспортных системах

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5665

Подписал: заведующий кафедрой Нутович Вероника

Евгеньевна

Дата: 03.06.2023

1. Общие сведения о дисциплине (модуле).

Целями освоения дисциплины (модуля) являются:

- изучение основных теорем и фактов теории вероятностей и математической статистики;
- изучение и анализ закономерностей, происходящих в массовых (случайных) явлениях;
- -приобретение необходимых компетенций для практик и проектной деятельности.

Задачами дисциплины (модуля) являются:

- формирование личности студента, развитие его интеллекта и умения логически и алгоритмически мыслить, формирование умений и навыков, необходимых при практическом применении приемов и методов теории вероятностей и математической статистики.
- формирование у студентов навыков метода сбора, обработки и анализа экспериментальных статистических данных.
  - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

**ОПК-8** - Способен применять математические модели, методы и средства проектирования информационных и автоматизированных систем.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

#### Знать:

основные методы и понятия теории вероятностей и математической статистики, в частности:

- понятия вероятности события, случайной величины, основных характеристик одномерных и двумерных случайных величин;
- методы вычисления вероятностей событий, основных характеристик случайной величины и обработки статистических данных;
- классические задачи теории вероятностей и математической статистики такие, как задача о встрече, задача Бюффона, задача о встрече и тп.

#### Уметь:

- применять математические методы и модели к анализу случайных явлений для их адекватного описания и понимания;
  - анализировать условие задачи и применять один из изученных методов

для ее решения, применять системный подход к решению задачи;

- приводить примеры и контрпримеры к основным теоремам и определениям курса теория вероятностей и математическая статистика.

#### Владеть:

- навыками решения типовых вычислительных задач по дисциплине;
- навыками доказательства основных теорем;
- навыками поиска решения задач и доказательства теоремы;
- навыками обработки экспериментальных данных.
- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 3 з.е. (108 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

|                                                           |       | Количество |  |
|-----------------------------------------------------------|-------|------------|--|
| Тип учебных занятий                                       | часов |            |  |
|                                                           | Всего | Сем.       |  |
|                                                           |       | №4         |  |
| Контактная работа при проведении учебных занятий (всего): | 64    | 64         |  |
| В том числе:                                              |       |            |  |
| Занятия лекционного типа                                  | 32    | 32         |  |
| Занятия семинарского типа                                 | 32    | 32         |  |

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 44 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных

условиях, при проведении промежуточной аттестации.

# 4. Содержание дисциплины (модуля).

## 4.1. Занятия лекционного типа.

| $N_{\underline{0}}$ |                                                                                                              |  |
|---------------------|--------------------------------------------------------------------------------------------------------------|--|
| $\Pi/\Pi$           | Тематика лекционных занятий / краткое содержание                                                             |  |
| 1                   | Введение в теорию вероятностей.                                                                              |  |
|                     | Рассматриваемые вопросы:                                                                                     |  |
|                     | - комбинаторика: перестановки, размещения, сочетания.                                                        |  |
|                     | - классическое определение вероятности. Примеры непосредственного вычисления вероятностей.                   |  |
|                     | Задача о днях рождения.                                                                                      |  |
|                     | - геометрические вероятности, задача о встрече.                                                              |  |
|                     | - повторение испытаний. Формула Бернулли.                                                                    |  |
|                     | - локальная и интегральная теоремы Лапласа                                                                   |  |
| 2                   | Теоремы сложения и умножения вероятностей.                                                                   |  |
|                     | Рассматриваемые вопросы:                                                                                     |  |
|                     | - сумма событий, несовместные события.                                                                       |  |
|                     | - теорема сложения для несовместных событий                                                                  |  |
|                     | - полная группа событий, противоположные события                                                             |  |
|                     | - теоремы о полной группе событий и противоположных событиях                                                 |  |
|                     | - произведение событий, зависимые и независимые события                                                      |  |
|                     | - теорема умножения для независимых событий                                                                  |  |
| 3                   | Условная вероятность события.                                                                                |  |
|                     | Рассматриваемые вопросы:                                                                                     |  |
|                     | - определение условной вероятности события, примеры                                                          |  |
|                     | - теорема умножения для зависимых событий и следствия из нее                                                 |  |
|                     | - формула полной вероятности, примеры                                                                        |  |
| 4                   | - формула Байеса, примеры.                                                                                   |  |
| 4                   | Повторение испытаний.                                                                                        |  |
|                     | Рассматриваемые вопросы:                                                                                     |  |
|                     | - формула Бернулли и ее вывод, примеры.                                                                      |  |
|                     | - локальная теорема Лапласа, примеры.<br>- интегральная теорема Лапласа, примеры.                            |  |
| 5                   |                                                                                                              |  |
| 3                   | Виды случайных величин. Задание дискретной случайной величины.                                               |  |
|                     | Рассматриваемые вопросы: - определение случайной величины (CB)                                               |  |
|                     | - определение случаиной величины (СВ) - определение дискретной и непрерывной СВ                              |  |
|                     | - закон распределения СВ, примеры                                                                            |  |
|                     | - биномиальное распределение и его предельный случай (распределение Пуассона)                                |  |
|                     | - оиномиальное распределение и его предельный случай (распределение Пуассона) - геометрическое распределение |  |
|                     | - гипергеометрическое распределение, примеры                                                                 |  |
| 6                   | Математическое ожидание и дисперсия дискретной СВ                                                            |  |
|                     | Рассматриваемые вопросы:                                                                                     |  |
|                     | - формула для вычисления математического ожидания дискретной СВ                                              |  |
|                     | - свойства математического ожидания                                                                          |  |
|                     | - отклонение СВ                                                                                              |  |
|                     | - формула для вычисления дисперсии дискретной СВ                                                             |  |
|                     | - свойства дисперсии                                                                                         |  |
|                     |                                                                                                              |  |

| No    |                                                                                    |  |
|-------|------------------------------------------------------------------------------------|--|
| п/п   | Тематика лекционных занятий / краткое содержание                                   |  |
| 11/11 | - формула для вычисления среднеквадратичного отклонения                            |  |
| 7     | Функция распределения (ф.р.) вероятностей случайной величины. Плотность            |  |
|       | непрерывной СВ.                                                                    |  |
|       | Рассматриваемые вопросы:                                                           |  |
|       | - определение ф.р.                                                                 |  |
|       | - свойства ф.р.                                                                    |  |
|       | - график ф.р.                                                                      |  |
|       | - определение плотности распределения                                              |  |
|       | - свойства плотности распределения                                                 |  |
| 8     | Основные распределения непрерывных СВ.                                             |  |
|       | Рассматриваемые вопросы:                                                           |  |
|       | - вычисление мат. ожидания и дисперсии в случае непрерывной СВ                     |  |
|       | - закон равномерного распределения вероятностей                                    |  |
|       | - нормальное распределение и его хар-ки                                            |  |
|       | - нормальная кривая и ее свойства - вероятность попадания нормальной СВ в интервал |  |
|       | - правило трех сигм                                                                |  |
| 9     | Показательное распределение                                                        |  |
|       | Рассматриваемые вопросы:                                                           |  |
|       | - ф.р. показательного закона                                                       |  |
|       | - числовые хар-ки показательного распределения                                     |  |
|       | - функция надежности. Показательный закон надежности.                              |  |
|       | - характеристическое св-во показательного закона надежности                        |  |
| 10    | Система случайных величин                                                          |  |
|       | Рассматриваемые вопросы:                                                           |  |
|       | - понятие о системе нескольких случайных величин                                   |  |
|       | - закон распределения вероятностей двумерной дискретной СВ                         |  |
|       | - ф.р. двумерной СВ, св-ва ф.р.                                                    |  |
|       | - вероятность попадания случайной точки в полуполосу и прямоугольник               |  |
|       | - условные законы распределения и условное математическое ожидание                 |  |
| 11    | Непрерывная двумерная СВ.                                                          |  |
|       | Рассматриваемые вопросы:                                                           |  |
|       | - плотность ф.р. непрерывной СВ                                                    |  |
|       | - вероятностный смысл двумерной плотности вероятности                              |  |
|       | - вероятность попадания случайной точки в произвольную область                     |  |
|       | - свойства двумерной плотности вероятности                                         |  |
|       | - отыскание плотностей вероятностей составляющих                                   |  |
|       | - условные законы распределения                                                    |  |
| 12    | Зависимые и независимые двумерные СВ.                                              |  |
|       | Рассматриваемые вопросы:                                                           |  |
|       | - критерий зависимости случайных величин, примеры                                  |  |
|       | - числовые характеристики двумерной CB;                                            |  |
|       | - корреляционный момент и коэффициент корреляции;                                  |  |
|       | - свойства корреляционного момента и коэффициента корреляции;                      |  |
| 10    | - коррелированность и зависимость случайных величин                                |  |
| 13    | Функции случайного аргумента                                                       |  |
|       | Рассматриваемые вопросы:                                                           |  |
|       | - распределение функции случайного аргумента                                       |  |
|       | - математическое ожидание функции одного случайного аргумента                      |  |
|       | - распределение суммы независимых слагаемых                                        |  |
|       | - распределения хи-квадрат и Стьюдента                                             |  |

| <b>№</b><br>п/п | Тематика лекционных занятий / краткое содержание                                              |  |
|-----------------|-----------------------------------------------------------------------------------------------|--|
| 14              | Закон больших чисел. Понятие о центральной предельной теореме.                                |  |
|                 | Рассматриваемые вопросы:                                                                      |  |
|                 | - неравенство Чебышева                                                                        |  |
|                 | - теорема Чебышева                                                                            |  |
|                 | - сущность и значение теоремы Чебышева для практики                                           |  |
|                 | - теорема Бернулли (закон больших чисел)                                                      |  |
|                 | - понятие о теореме Ляпунова. Формулировка центральной предельной теоремы.                    |  |
| 15              | Элементы математической статистики.                                                           |  |
|                 | Рассматриваемые вопросы:                                                                      |  |
|                 | - способы отбора                                                                              |  |
|                 | - методы построения выборки. Эмпирическая функция распределения.                              |  |
|                 | - полигон и гистограмма.                                                                      |  |
|                 | - полигон и гистограмма относительных частот.                                                 |  |
| 16              | Статистические оценки параметров распределения                                                |  |
|                 | Рассматриваемые вопросы:                                                                      |  |
|                 | - несмещенные, эффективные и состоятельные оценки                                             |  |
|                 | - выборочная средняя и выборочная дисперсия как тривиальные оценки параметров распр.          |  |
|                 | - интервальные оценки. Надежность (доверительная вероятность) оценки. Доверительный интервал. |  |
|                 | - доверительные интервалы для нормального распределения                                       |  |
| 17              | Методы нахождения оценок точечных оценок параметров распределения.                            |  |
|                 | Рассматриваемые вопросы:                                                                      |  |
|                 | - метод моментов, примеры                                                                     |  |
|                 | - метод наибольшего правдоподобия, примеры                                                    |  |
|                 | - мода и медиана вариационного ряда                                                           |  |

# 4.2. Занятия семинарского типа.

# Практические занятия

|                 | •                                                                                                |  |
|-----------------|--------------------------------------------------------------------------------------------------|--|
| <b>№</b><br>п/п | Тематика практических занятий/краткое содержание                                                 |  |
| 1               | Введение в теорию вероятностей.                                                                  |  |
|                 | В результате работы на практических занятиях студент учится решать задачи по комбинаторике,      |  |
|                 | различать основные типы используемых в задачах формул на перестановки, размещения, сочетания.    |  |
| 2               | Геометрические вероятности.                                                                      |  |
|                 | В результате работы на практических занятиях студент учится решать задачи на геометрические      |  |
|                 | вероятности, сводить некоторые обычные задачи к задачам на геометрические вероятности,           |  |
|                 | знакомится с решениями классических задач теории вероятностей таких, как задача Бюффона и задача |  |
|                 | о встрече.                                                                                       |  |
| 3               | Теоремы сложения и умножения вероятностей.                                                       |  |
|                 | В результате работы на практических занятиях студент учится определять, являются ли события      |  |
|                 | совместными или несовместными, зависимыми или независимыми, решает задачи на                     |  |
|                 | противоположные события, применяет теоремы сложения и умножения вероятностей для решения         |  |
|                 | задач.                                                                                           |  |
| 4               | Условная вероятность события.                                                                    |  |
|                 | В результате работы на практических занятиях студент учится определять, являются ли события      |  |
|                 | зависимыми или независимыми, находить условную вероятность события, применять теорему            |  |
|                 | умножения вероятностей для зависимых событий, формулу полной вероятности и Байеса для решения    |  |
|                 | задач                                                                                            |  |

| №   |                                                                                                                                                                                                                                                                                                                                                                                      |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| п/п | Тематика практических занятий/краткое содержание                                                                                                                                                                                                                                                                                                                                     |  |
| 5   | Повторение испытаний. В результате работы на практических занятиях студент учится решать задачи на формулу Бернулли, применять локальную и интегральную теорему Лапласа, свойства функции Лапласа для решения задач.                                                                                                                                                                 |  |
| 6   | Виды случайных величин. Задание дискретной случайной величины.                                                                                                                                                                                                                                                                                                                       |  |
|     | В результате работы на практических занятиях студент при решении практических задач учится строить законы, задаваемые основными дискретными распределениями (биномиальное, пуассоновское, геометрическое и гипергеометрическое).                                                                                                                                                     |  |
| 7   | Математическое ожидание и дисперсия дискретной СВ. В результате работы на практических занятиях студент при решении практических задач учится вычислять математическое ожидание дискретной СВ, применять свойства математического ожидания вычислять дисперсию дискретной СВ и применять свойства дисперсии, вычислять среднеквадратичное отклонение.                                |  |
| 8   | Функция распределения (ф.р.) вероятностей случайной величины. Плотность непрерывной СВ. В результате работы на практических занятиях студент при решении практических задач учится строить график ф.р. случайной величины, искать плотности распределения и восстанавливать функцию распределения по плотности, применять свойства плотности распределения.                          |  |
| 9   | Основные распределения непрерывных СВ. В результате работы на практических занятиях студент при решении практических задач учится вычислять мат. ожидание и дисперсию в случае непрерывной СВ, строить закон равномерного распределения вероятностей и нормального распределения, искать вероятность попадания нормальной СВ в заданный интервал.                                    |  |
| 10  | Показательное распределение. В результате работы на практических занятиях студент при решении практических задач учится находить ф.р. и строить график ф.р. показательного закона, числовые хар-ки показательного распределения, строить функция надежности и показательный закон надежности.                                                                                        |  |
| 11  | Система случайных величин. В результате работы на практических занятиях студент при решении практических задач учится строить закон распределения вероятностей двумерной дискретной СВ, график ф.р. двумерной СВ, применять св-ва ф.р., искать вероятность попадания случайной точки в полуполосу и прямоугольник, условные законы распределения и условное математическое ожидание. |  |
| 12  | Непрерывная двумерная СВ. В результате работы на практических занятиях студент при решении практических задач учится искать плотность ф.р. непрерывной СВ, восстанавливать ф.р. по ее плотности, искать плотности вероятностей составляющих, строить условные законы распределения.                                                                                                  |  |
| 13  | Зависимые и независимые двумерные СВ. В результате работы на практических занятиях студент при решении практических задач учится проверять, являются ли компоненты двумерной СВ зависимыми или нет, находить корреляционный момент и коэффициент корреляции, проверять коррелированность и зависимость случайных величин.                                                            |  |
| 14  | Функции случайного аргумента. В результате работы на практических занятиях студент при решении практических задач учится искать распределение функции случайного аргумента, математическое ожидание функции одного случайного аргумента, распределение суммы независимых слагаемых.                                                                                                  |  |
| 15  | Элементы математической статистики. В результате работы на практических занятиях студент при решении практических задач учится строить эмпирическую функцию распределения, полигон и гистограмму, полигон и гистограмму относительных частот.                                                                                                                                        |  |
| 16  | Статистические оценки параметров распределения.                                                                                                                                                                                                                                                                                                                                      |  |

| <b>№</b><br>п/п | Тематика практических занятий/краткое содержание                                            |  |  |
|-----------------|---------------------------------------------------------------------------------------------|--|--|
|                 | В результате работы на практических занятиях студент при решении практических задач учится  |  |  |
|                 | проверять, является ли некоторая оценка несмещенной, эффективной или состоятельной, искать  |  |  |
|                 | выборочную среднюю и выборочную дисперсию, строить интервальные оценки для нормального      |  |  |
|                 | распределения.                                                                              |  |  |
| 17              | Методы нахождения оценок точечных оценок параметров распределения.                          |  |  |
|                 | В результате работы на практических занятиях студент при решении практических задач учится  |  |  |
|                 | строить точечные оценки распределений с использованием метода моментов и метода наибольшего |  |  |
|                 | правдоподобия.                                                                              |  |  |

# 4.3. Самостоятельная работа обучающихся.

| <b>№</b><br>п/п | Вид самостоятельной работы             |
|-----------------|----------------------------------------|
| 1               | Изучение дополнительной литературы     |
| 2               | Подготовка к практическим занятиям     |
| 3               | Подготовка к промежуточной аттестации. |
| 4               | Подготовка к текущему контролю.        |

# 5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

| №<br>п/п | Библиографическое описание                                                                                                                                                                          | Место доступа                                                            |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| 1        | К.В. Балдин, В.Н. Башлыков, А.В. Рукосуев. Теория вероятностей и математическая статистика. Учебник Москва: Дашков и К, 2021- 472 с. ISBN 978-5-394-                                                | https://ibooks.ru/bookshelf/378267/reading (дата обращения: 08.05.2022). |
| 2        | О3595-1 М.В. Васина, А.А. Васин, Е.В. Манохин Теория вероятностей и математическая статистика Методические указания к практическим занятиям Москва: Прометей, 2018 - 178 с. ISBN: 978-5-00172-187-1 | https://ibooks.ru/bookshelf/359670/reading (дата обращения: 08.05.2022). |
| 3        | П.Н. Сапожников, А.А. Макаров, М.В. Радионова Теория вероятностей, математическая статистика в примерах, задачах и тестах Методическое пособие Москва: КУРС, 2016 - 496 с. ISBN 978-5-906818-47-8   | https://ibooks.ru/bookshelf/361632/reading (дата обращения: 08.05.2022). |
| 4        | М.Б. Лагутин Наглядная математическая статистика. Учебное пособие Москва: Лаборатория знаний, 2019 - 472 с. ISBN: 978-5-00101-065-4                                                                 | https://ibooks.ru/bookshelf/373285/reading (дата обращения: 08.05.2022). |

| 5 | А.В. Ефимов, А.С. Поспелов. Сборник задач   | НТБ РУТ(МИИТ) |
|---|---------------------------------------------|---------------|
|   | по математике для вузов Учебное пособие     |               |
|   | Москва: Физматлит, 2014 - 288 с. ISBN: 978- |               |
|   | 5-94052-234-8                               |               |

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (https://www.miit.ru/).

Научно-техническая библиотека РУТ (МИИТ) (http:/library.miit.ru).

Образовательная платформа «Юрайт» (https://urait.ru/).

Общие информационные, справочные и поисковые системы «Консультант Плюс», «Гарант».

Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/). Электронно-библиотечная система ibooks.ru (http://ibooks.ru/).

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Microsoft Internet Explorer (или другой браузер).

Операционная система Microsoft Windows.

Microsoft Office.

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебные аудитории для проведения учебных занятий, оснащенные компьютерной техникой и наборами демонстрационного оборудования.

9. Форма промежуточной аттестации:

Зачет в 4 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

## Авторы:

доцент, к.н. кафедры «Цифровые технологии управления транспортными процессами»

М.К. Турцынский

Согласовано:

Заведующий кафедрой ЦТУТП

В.Е. Нутович

Председатель учебно-методической

комиссии Н.А. Клычева