МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 09.03.02 Информационные системы и технологии, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Теория графов и комбинаторика

Направление подготовки: 09.03.02 Информационные системы и

технологии

Направленность (профиль): Технологии искусственного интеллекта в

транспортных системах

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5665

Подписал: заведующий кафедрой Нутович Вероника

Евгеньевна

Дата: 01.09.2025

1. Общие сведения о дисциплине (модуле).

Целями освоения дисциплины «Теория графов и комбинаторика» являются: знакомство с фундаментальными понятиями и математическим аппаратом теории графов; изучение основных задач теории графов, алгоритмов и методов их решения; формирование навыков эффективно применять модели теории графов для решения прикладных задач

2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ОПК-8 - Способен применять математические модели, методы и средства проектирования информационных и автоматизированных систем.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- основные формулы комбинаторики;
- основные понятия теории графов;
- способы представления графов;
- часто встречающиеся прикладные задачи теории графов;
- основные алгоритмы теории графов область их применения.

Уметь:

- применять комбинаторные формулы для подсчёта числа различных комбинаций;
 - записывать матрицы смежности и инцидентности графа;
 - определять тип графа;
 - решать задачи нахождения эйлерова и гамильтонова цикла;
 - находить кратчайшее остовное дерево.

Владеть:

- навыками применения комбинаторных формул;
- навыками матричного задания графов;
- навыками применения алгоритмов Краскала, Прима, Дейкстры, Форда-Беллмана, Флойда для решения задач на графах.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 3 з.е. (108 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
	Всего	Семестр №4
Контактная работа при проведении учебных занятий (всего):	64	64
В том числе:		
Занятия лекционного типа	32	32
Занятия семинарского типа	32	32

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 44 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

№	Тематика лекционных занятий / краткое содержание	
п/п		
1	Элементы комбинаторики.	
	Рассматриваемые вопросы:	
	- Правила суммы и произведения;	
	- Размещения, сочетания и перестановки с повторениями и без повторений.;	
	- Круговые перестановки;	
	- Бином Ньютона. Треугольник Паскаля. Правило включения-исключения.	
2	Введение в теорию графов.	
	Рассматриваемые вопросы:	
	- История возникновения и развития теории графов;	

No॒	T	
п/п	Тематика лекционных занятий / краткое содержание	
	- Основные понятия и определения: понятие графа, вершины, ребра, дуги, ориентированные и	
	неориентированные графы, простой граф, петли, кратные ребра, виды графов, подграфы;	
	- Степени вершин. Способы задания графов;	
	- Матрица смежности, матрица инцидентности графа.	
3	Деревья.	
	Рассматриваемые вопросы:	
	-Понятие дерева, листа, леса;	
	- Неориентированные и ориентированные деревья;	
	- Остовные деревья.	
4	Задачи, связанные с обходами графов.	
	Рассматриваемые вопросы:	
	- Путь, простой путь, циклический путь, цепь, цикл;	
	- Достижимость и связность, компоненты связности. Сильные компоненты графа и конденсация;	
	- База и антибаза графа;	
	- Построение кратчайшего остовного дерева: алгоритм Краскала, алгоритм Прима.	
5	Эйлеровы и гамильтоновы графы.	
	Рассматриваемые вопросы:	
	- Понятие эйлерова пути, эйлерова цикла, эйлерова графа. Необходимые и достаточные условия	
	существования эйлерова пути;	
	- Критерий эйлеровости графа;	
	- Понятие гамильтонова пути, гамильтонового цикла, гамильтонового графа. Достаточное условие	
	гамильтоновости графа.	
6	Кратчайшие пути в графах.	
	Рассматриваемые вопросы:	
	- Понятие взвешенного графа;	
	- Постановка задачи нахождения кратчайшего пути во взвешенном графе;	
	- Алгоритм Форда-Беллмана. Алгоритм Дейкстры. Алгоритм Флойда.	
7	Построение максимального потока.	
	Рассматриваемые вопросы:	
	- Понятие потока. Постановка задачи;	
	- Алгоритм Форда-Фолкерсона построения максимального потока.	
8	Дискретные модели теории графов	
	Рассматриваемые вопросы:	
	- Задача об изоморфизме графов;	
	- Задачи о раскрасках графов (Рёберные и вершинные раскраски. Раскраски плоских графов);	
	- Задача о покрытии конечного множества системой его подмножеств.	

4.2. Занятия семинарского типа.

Практические занятия

№ п/п	Тематика практических занятий/краткое содержание	
1	Элементы комбинаторики.	
	В результате выполнения практического задания студент изучает основные комбинаторные	
	формулы и учится применять их для подсчёта числа комбинаций, составленных различными	
	способами по заданным правилам.	
2	Введение в теорию графов.	
	В результате выполнения практического задания студент изучает основные понятия и определения	

No	Тематика практических занятий/краткое содержание		
п/п			
	теории графов, учится различными способами задавать графы, приобретает навык классификации		
	графов.		
3	Деревья.		
	В результате выполнения практического задания студент изучает понятие дерева.		
4	Задачи, связанные с обходами графов.		
	В результате выполнения практического задания студент изучает понятия пути и маршрута на		
	графе, учится строить матрицы достижимости и контрдостижимости, искать сильные компоненты и		
	конденсацию графа.		
	Строить базу, антибазу и сильную базу графа. Осваивает навык построения кратчайшего остовного		
	дерева: алгоритм Краскала, алгоритм Прима		
5	Эйлеровы и гамильтоновы графы.		
	В результате выполнения практического задания студент изучает алгоритмы нахождения эйлерова		
	и гамильтонова циклов в графе.		
6	Кратчайшие пути в графах.		
	В результате выполнения практического задания студент изучает алгоритмы Форда-Беллмана, алгоритм Дейкстры, алгоритм Флойда.		
7	Построение максимального потока.		
	В результате выполнения практического задания студент изучает алгоритм Форда-Фолкерсона		
	построения максимального потока		
8	Дискретные модели теории графов.		
	В результате выполнения практического задания студент изучает алгоритмы решения задач об		
	изоморфизме графов, задачи о раскраске графа, задачи о покрытии множества системой его		
	подмножеств.		

4.3. Самостоятельная работа обучающихся.

	<u>- </u>
№	Рид ормостоятан ной работи
Π/Π	Вид самостоятельной работы
1	Работа с лекционным материалом.
2	Работа с литературой.
3	Текущая подготовка к занятиям.
4	Подготовка к промежуточной аттестации.
5	Подготовка к текущему контролю.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Басакер Р., Саати Т. Конечные графы и сети: Пер. с англ.	НТБ РУТ(МИИТ)
	– M.: Наука, 1973. – 368 c.	
2	Берж К. Теория графов и её применение. – М.: Книга по	НТБ РУТ(МИИТ)
	Требованию, 2021. – 318 с. ISBN 978-5-458-30039-1	

3	Виленкин Н.Я., Виленкин А.Н., Виленкин П.А.	НТБ РУТ(МИИТ)
	Комбинаторика. – М.: ФИМА, МЦНМО, 2022. – 400 с.	
	ISBN 978-5-4439-2561-5	
4	Дистель Р. Теория графов: Пер. с англ. – Новосибирск:	НТБ РУТ(МИИТ)
	Изд-во Ин-та математики, 2002. – 336 с. ISBN 5-86134-	
	101-X	
5	Емеличев В.А. и др. Лекции по теории графов. – М.:	НТБ РУТ(МИИТ)
	Наука, 1990. – 384 с. ISBN 5-02-013992-0	
6	Зуховицкий С.И., Радчик И.А. Математические методы	НТБ РУТ(МИИТ)
	сетевого планирования. – М.: Наука, 1965. – 296 с.	
7	Зыков А.А. Основы теории графов. – М.: Наука, 1987. –	НТБ РУТ(МИИТ)
	384 c. ISBN 978-00-1457803-0	
8	Кристофидес Н. Теория графов. Алгоритмический	НТБ РУТ(МИИТ)
	подход. – М.: Мир, 1978. – 432 с.	
9	Оре О. Теория графов. Пер.с англ.Изд.2-е – М.:	НТБ РУТ(МИИТ)
	Либроком, 2009. – 354 с. ISBN 978-5-397-00044-4	
10	Харари Ф. Теория графов. – М.: Либроком, 2018. – 302 с.	НТБ РУТ(МИИТ)
	ISBN 978-5-971-05127-5	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

HTБ РУТ(МИИТ)- https://library.miit.ru/
Поисковые системы - http://www.yandex.ru/; http://www.rambler.ru/

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Операционная система Microsoft Windows. Пакет офисных программ Microsoft Office.

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебные аудитории для проведения учебных занятий, оснащенные компьютерной техникой и наборами демонстрационного оборудования.

Для практических занятий — наличие персональных компьютеров вычислительного класса.

9. Форма промежуточной аттестации:

Зачет в 4 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, доцент, к.н. кафедры «Цифровые технологии управления транспортными процессами»

А.П. Иванова

Согласовано:

Заведующий кафедрой ЦТУТП

В.Е. Нутович

Председатель учебно-методической

комиссии Н.А. Андриянова