МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы магистратуры по направлению подготовки 13.04.02 Электроэнергетика и электротехника, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Теория и практика научного исследоания

Направление подготовки: 13.04.02 Электроэнергетика и электротехника

Направленность (профиль): Электроснабжение

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 3221

Подписал: заведующий кафедрой Шевлюгин Максим

Валерьевич

Дата: 27.03.2022

1. Общие сведения о дисциплине (модуле).

«Теория и практика научного эксперимента» является: формирование у обучающихся знания и понимания основ современных подходов к исследованиям, в которых математическим методам отводится ведущая роль, а эксперимент занимает главенствующее место среди способов получения информации и является отправной точкой и критерием адекватности знаний, а также формирование у обучающихся практических навыков построения плана эксперимента и получения математического описания процесса на основе полученных экспериментальных данных.

2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-1** Способен формулировать цели и задачи исследования, выявлять приоритеты решения задач, выбирать критерии оценки;
- **ОПК-2** Способен применять современные методы исследования, оценивать и представлять результаты выполненной работы;
- **УК-1** Способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий;
- **УК-6** Способен определить и реализовать приоритеты собственной деятельности и способы ее совершенствования на основе самооценки.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

современные методы и средства измерений и контроля параметров продукции и технологических процессов;

Уметь:

составлять на основе результатов экспериментов математические модели технических систем;

Владеть:

навыками оформления результатов исследований и принятия соответствующих решений.

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 5 з.е. (180 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество	
	часов	
	Всего	Сем.
		№ 1
Контактная работа при проведении учебных занятий (всего):	50	50
В том числе:		
Занятия лекционного типа	34	34
Занятия семинарского типа	16	16

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 130 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

№ п/п	Тематика лекционных занятий / краткое содержание	
1	Основные термины, определения и понятия теории планирования эксперимента.	
	Факторы. Факторное пространство. Уровни факторов. Кодирование факторов. Функция отклика.	
	Поверхность функции отклика.	
2	Выбор модели.	
	Линейные и полиномиальные модели технических систем. Модели линейной регрессии. Эксперимент	

№ п/п	Тематика лекционных занятий / краткое содержание			
	как основа математического моделирования. Выбор точек проведения эксперимента. Определение			
	эффектов взаимодействия факторов.			
3	Дробный факторный эксперимент.			
	Генерирующие соотношения. Определяющий контраст. Обобщающий определяющий контраст. Пути			
	повышения точности полиномов			
4	Планы второго порядка.			
	Ортогональный центральный композиционный план второго порядка. Планы Бокса. Планы Хартли.			
	Ротатабельные центральные композиционные планы второго порядка.			

4.2. Занятия семинарского типа.

Практические занятия

№ п/п	Тематика практических занятий/краткое содержание		
1	Цели, задачи и методы теории планирования эксперимента. Основные термины,		
	определения и понятия теории планирования эксперимента.		
2	Факторы. Факторное пространство. Уровни факторов. Кодирование факторов.		
	Функция отклика. Поверхность функции отклика.		
3	Выбор модели. Линейные и полиномиальные модели технических систем. Модели		
	линейной регрессии. Эксперимент как основа математического моделирования.		
4	Выбор точек проведения эксперимента. Определение эффектов взаимодействия		
	факторов.		
5	Дробный факторный эксперимент . Генерирующие соотношения. Определяющий		
	контраст. Обобщающий определяющий контраст. Пути повышения точности		
	полиномов.		
6	Планы второго порядка. Ортогональный центральный композиционный план второго		
	порядка. Планы Бокса. Планы Хартли.		
7	Ротатабельные центральные композиционные планы второго порядка. Ротатабельные		
	ортогональные центральные композиционные планы второго порядка.		

4.3. Самостоятельная работа обучающихся.

№	Вид самостоятельной работы			
п/п				
1	Основные термины, определения и понятия эксперимента.			
2	Выбор точек проведения эксперимента. Определение эффектов взаимодействия			
	факторов.			
3	Дробный факторный эксперимент. Генерирующие соотношения.			
4	Ротатабельные центральные композиционные планы второго порядка.			
5	Подготовка к промежуточной аттестации.			
6	Подготовка к текущему контролю.			

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Планирование и организация эксперимента Никишечкин	http://library.miit.ru/
	А.П., Хлопков А.М. Учебное пособие М.: МГУПС	
	(МИИТ), , 2015	
2	Теория планирования эксперимента и анализ	http://library.miit.ru/
	статистических данных Сидняев Н.И. Учебное пособие М.:	
	ИД Юрайт, 2012	
3	Эксперимент. Теория. Практика П.Л. Капица; Академия	НТБ (фб.)
	наук СССР Однотомное издание Наука. Гл. ред. физмат.	
	лит. , 1981	
4	Эксперимент. Модель. Теория АН СССР, Ин-т философии,	НТБ (фб.)
	Академия наук ГДР, Центральный ин-т философии	
	Однотомное издание Наука, 1982	
1	Теория оптимального эксперимента Федоров В.В. Учебное	
	пособие М.: Наука, 1971	
2	« Исследовательские испытания. Планирование	
	эксперимента. Термины и определения. ГОСТ 24026-80 М.:	
	Издательство «Стандарты», 1980	
3	Эксперимент. Теория. Практика П.Л. Капица Однотомное	НТБ (фб.)
	издание Наука. Гл. ред. физмат. лит., 1977	
4	Научный эксперимент и экспериментальные методы В.	
	Быков Содержание	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

http://library.miit.ru/ - электронно-библиотечная система Научно-технической библиотеки РУТ (МИИТ).http://rzd.ru/ - сайт ОАО «РЖД».. http://elibrary.ru/ - научно-электронная библиотека.Поисковые системы: Yandex, Google, Mail.

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Для проведения лекционных занятий необходима лекционная аудитория с интерактивной доской, позволяющей обучающемуся усваивать изучаемый материал, находясь в любом месте аудитории, независимо от ее размеров. Для проведения практических занятий необходима аудитория с

электротехническим и компьютерным оборудованием. Электротехническое оборудование вместе с измерительными приборами должно быть размещено на лабораторных стендах и обеспечено комплектами соединительных проводов и средствами защиты от поражения током (напряжением). Компьютеры должны быть оснащены стандартным лицензионным программным продуктом Microsoft Office не ниже Microsoft Office 2007 (2013).

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Для проведения аудиторных занятий и самостоятельной работы требуется:1. Экспериментально-исследовательская лаборатория со стендами. Размеры лаборатории должны создавать комфортные условия для коллективной и индивидуальной работы преподавателя с магистрантами.

- 2. Количество стендов в лаборатории должно создавать условия для индивидуальной, активной и творческой работы обучающегося по данной дисциплине.
- 3. Автоматизированное рабочее место для обучающегося, подключённое к сетям INTERNET.
 - 9. Форма промежуточной аттестации:

Зачет в 1 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы

Никишечкин

Анатолий Петрович

Лист согласования

Заведующий кафедрой ЭЭТ М.В. Шевлюгин

Председатель учебно-методической

комиссии С.В. Володин