МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 01.03.02 Прикладная математика и информатика, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Теория игр и исследование операций

Направление подготовки: 01.03.02 Прикладная математика и

информатика

Направленность (профиль): Математическое моделирование и системный

анализ

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5665

Подписал: заведующий кафедрой Нутович Вероника

Евгеньевна

Дата: 03.04.2025

1. Общие сведения о дисциплине (модуле).

Цель освоения учебной дисциплины (модуля):

- формирование умений и навыков, необходимых для практического применения методов и алгоритмов теории игр и исследовании операций при поиске оптимальных решений в конфликтных ситуациях в организационной, экономической и финансовой сферах деятельности, в задачах проектирования с противоречивыми критериями.

Задачами дисциплины (модуля) являются:

- обучение студента применению основных понятий и моделей теории игр и исследования операций,
- формирование личности студента, развитие его интеллекта и умения логически и алгоритмически мыслить,
- подготовка к изучению последующих специальных курсов, использующих методы теории игр и исследование операций.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ПК-4 - Уметь ставить цели создания системы, разрабатывать концепцию системы и требования к ней, выполнять декомпозицию требований к системе.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- понятия игры, стратегии, равновесной ситуации;
- методы нахождения решения различных игр в чистых и смешанных стратегиях;
 - алгоритмы голосования.

Уметь:

- проверять существование решения матричной игры в чистых стратегиях;
- находить все решения матричной игры в чистых стратегиях, если они существуют;
- находить решения матричной игры в чистых или смешанных стратегиях с помощью линейного программирования;
- для многосторонних игр находить оптимальные по Парето ситуации и проверять существование ситуаций равновесия в чистых стратегиях;

- находить решения в играх с природой;
- применять различные алгоритмы голосования.

Владеть:

- различными методами нахождения решения матричной игры в чистых и смешанных стратегиях;
 - методами решения многосторонних игр;
 - методами решения игр с природой;
 - навыками применения алгоритмов голосования.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 3 з.е. (108 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
тип учесных запятии	Всего	Семестр №7
Контактная работа при проведении учебных занятий (всего):	64	64
В том числе:		
Занятия лекционного типа		32
Занятия семинарского типа	32	32

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 44 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.

4. Содержание дисциплины (модуля).

4.1. Занятия лекционного типа.

No				
п/п	Тематика лекционных занятий / краткое содержание			
1	Теория игр. Введение. Классификация			
_	Рассматриваемые вопросы:			
	- основные определения и понятия;			
	- история возникновения теории игр;			
	- виды ходов;			
	- стратегии;			
	- решение игры;			
	- классификация стратегических игр.			
2	Матричные игры. Сценарий игры			
	Рассматриваемые вопросы:			
	- множество ситуаций в чистых стратегиях;			
	- платёжная функция игры;			
	- антагонистические игры.			
3	Решение матричной игры в чистых стратегиях. Решение матричной игры в			
	смешанных стратегиях			
	Рассматриваемые вопросы:			
	- приемлемая ситуация;			
	- седловая точка; - оптимальные стратегии;			
	- нижнее и верхнее значение игры;			
	- сценарий игры;			
	- ситуация игры;			
	- приемлемые ситуации для 1 и 2 игроков;			
	- ситуация равновесия.			
4	Теорема о необходимом и достаточном условии существования ситуации			
•	равновесия в чистых стратегиях. Необходимый и достаточный признак ситуации			
	равновесия в смешанных стратегиях			
	Рассматриваемые вопросы:			
	- лемма (об основном неравенстве минимакса);			
	- теорема о необходимом и достаточном условии существования ситуации равновесия в чистых			
	стратегиях; - необходимый и достаточный признак ситуации равновесия в смешанных стратегиях,			
	доказательство;			
	- способ вычисления ситуаций равновесия в матричных играх.			
5	Редукция игры. Решение игры 2х2			
-	Рассматриваемые вопросы:			
	- редукция игры с учётом доминирования;			
	- доминируемая стратегия, доминирующая стратегия;			
	- теорема о доминировании;			
	- геометрическое решение;			
	- применение теоремы об активных стратегиях.			
6	Геометрическое решение матричных игр 2?п и m?2. Теорема Джона фон Неймана			
	Рассматриваемые вопросы:			
	- геометрическое решение;			

No			
п/п	Тематика лекционных занятий / краткое содержание		
11/11	- применение теоремы об активных стратегиях;		
	- сведение матричной игры к паре двойственных задач линейного программирования;		
	- теорема Джона фон Неймана.		
	теорема джона фон пенмана.		
7	Симметричные игры. Игры с природой		
	Рассматриваемые вопросы:		
	- определение симметричной игры;		
	- теорема о связи пары сопряжённых задач линейного программирования с симметричной игрой;		
	- основные определения: природа, стратегии природы, риск;		
	- критерий Байеса;		
	- критерий Лапласа;		
	- максиминный критерий Вальда;		
	- критерий минимаксного риска Сэвиджа;		
	- критерий пессимизма-оптимизма Гурвица;		
	- критерий Ходжеса-Лемана;		
	- критерий Гермейера;		
	- критерий Гермейера-Гурвица.		
8	Многосторонние игры, определения. Решение многосторонней игры. Теоремы		
	многосторонних игр		
Рассматриваемые вопросы:			
	- сценарий многосторонней игры;		
	- биматричные игры;		
	- парето-оптимальные ситуации;		
	- смешанные стратегии;		
	- лемма о чистой стратегии;		
	- теорема Брауэра;		
	- теорема Нэша о существовании ситуации равновесия;		
	- ситуации равновесия в смешанных стратегиях;		
	- ситуации равновесия в чистых стратегиях.		
9	Теорема о дополняющей нежёсткости. Диадические игры		
	Рассматриваемые вопросы:		
	- теорема о дополняющей нежёсткости;		
	- примеры применения теоремы о дополняющей нежёсткости и арбитражных решений;		
	- определение диадической игры;		
	- методы решения диадических игр.		

10	Игры в форме характеристической функции. Кооперативная игра		
	Рассматриваемые вопросы:		
	- определения;		
	- пример кооперативного мероприятия;		
	- сценарий игры;		
	- характеристическая функция;		
	- коалиция;		
	- вектор дележа;		
	- ядро кооперативной игры;		
	- лемма о геометрии ядра;		
	- теорема (Необходимый и достаточный признак существования ядра).		
11	Вектор Шепли. Игры в развёрнутой форме		
	Рассматриваемые вопросы:		

No	Тематика лекционных занятий / краткое содержание	
п/п		
	- вектор Шепли; - вероятностное обоснование вектора Шепли; - теорема Шепли; - сценарий многошаговой игры с полной информацией; - прадерево.	
12	Ситуации равновесия в многошаговой игре с полной информацией. Игры на	
	бесконтурных графах Рассматриваемые вопросы:	
	- ситуации равновесия в многошаговой игре с полной информацией; - алгоритм Куна;	
	- игры на бесконтурных графах; - функция Шпрага-Гранди.	
13	Многошаговые игры с неполной информацией. Иерархические игры Рассматриваемые вопросы:	
	- антагонистические игры с неполной информацией;	
	- информационное множество;	
	- многошаговые игры со случайными ходами; - сценарий;	
- сценарии; - примеры решения иерархических игр;		
	- старший игрок, младший игрок;	
	- налоговый сбор.	
14	Алгоритмы голосования, определения. Правила парных сравнений	
	Рассматриваемые вопросы:	
	- профиль предпочтения; - простейшие алгоритмы голосования;	
	- правила парных сравнений;	
	- правило параллельных исключений.	
15	Правила голосования. Свойства правил голосования	
	Рассматриваемые вопросы:	
	- правила голосования: критерий Копленда, правило Симпсона;	
	- правило Борда;	
	- анонимность;	
	- нейтральность; - состоятельность по Кондорсе;	
	- парето-оптимальность;	
	- монотонность;	
	- аксиома пополнения;	
	- аксиома участия;	
	- независимость от посторонних альтернатив.	
16	Теоремы правил голосования. Теорема о пополнении	
	Рассматриваемые вопросы:	
	- теорема о несостоятельности по Кондорсе;- теорема о состоятельности по Кондорсе правил Копленда и Симпсона;	
	- теорема о состоятельности по кондорсе правил копленда и Симпсона; - теорема о пополнении;	
	100posta o nonomentin,	

№ п/п	Тематика лекционных занятий / краткое содержание
	- теорема об участии; - теорема о свойстве независимости от посторонних альтернатив.

4.2. Занятия семинарского типа.

Практические занятия

	практические запитии		
№ п/п	Тематика практических занятий/краткое содержание		
1	Классификация игр		
	В результате выполнения практического задания студент получает навык определения типа игры по		
	количетсву ходов, участников, стратегиям, наличию коалиций.		
2	Матричные игры. Сценарий игры. Решение матричной игры в чистых и смешанны		
	стратегиях		
	В результате выполнения практического задания студент получает навык определения ситуации		
	игры на примерах.		
3	Теорема о необходимом и достаточном условии существования ситуации		
	равновесия в чистых стратегиях		
	В результате выполнения практического задания студент получает навык проверки наличия		
	решения антагонистической игры в чистых стратегиях.		
4	Необходимый и достаточный признак ситуации равновесия в смешанных		
-	стратегиях		
	В результате выполнения практического задания студент получает навык вычисления ситуаций равновесия в матричных играх.		
5			
	В результате выполнения практического задания студент получает навык сведения матричной игры		
	к паре двойственных задач линейного программирования, и навыки определения доминируемых и		
	доминирующих стратегий, редукции игры с применением теоремы о доминировании.		
6	Геометрическое решение игры 2x2. Аналитическое решение игры 2x2		
	В результате выполнения практического задания студент получает навык решения матричной игры		
	2х2 геометрическим методом, и навык решения матричной игры аналитически с применением		
	теоремы об активных стратегиях.		
7	Геометрическое решение матричных игр 2?п. Геометрическое решение матричных		
	игр m?2		
	В результате выполнения практического задания студент получает навык рещения игры		
	геометрическим и аналитическим методами.		
8	Симметричные игры. Теорема о дополняющей нежёсткости		
	В результате выполнения практического задания студент получает навык решения симметричной		
	игры, и навыки применения теоремы о дополняющей нежёсткости и арбитражных решений.		
9	Игры с природой. Алгоритмы голосования		
	В результате выполнения практического задания студент получает навыки нахождения решения		
	игры с природой с применением следующих критериев:		
	- критерий Байеса;		
	- критерий Лапласа;		
10	- максиминный критерий Вальда.		
10	Многосторонние игры. Решение многосторонней игры		
	В результате выполнения практического задания студент получает навыки решения биматричных		

$N_{\underline{0}}$	Т		
п/п	Тематика практических занятий/краткое содержание		
	игр, определения парето-оптимальных ситуаций, нахождения ситуации равновесия в смешанных стратегиях.		
11	Диадические игры. Кооперативная игра		
	В результате выполнения практического задания студент получает навыки применения методов		
	решения диадических игр, и навыки нахождения ядра кооперативной игры.		
12	Игры в форме характеристической функции. Вектор Шепли		
	В результате выполнения практического задания студент получает навыки определения характеристической функции, коалиции и вектора дележа.		
13	Игры в развёрнутой форме. Игры на бесконтурных графах		
	В результате выполнения практического задания студент получает навыки решения многошаговой		
	игры с полной информацией, и навык решения игр на бесконтурных графах.		
14	Ситуации равновесия в многошаговой игре с полной информацией		
	В результате выполнения практического задания студент получает навыки применения алгоритма		
	Куна.		
15	Многошаговые игры с неполной информацией. Иерархические игры		
	В результате выполнения практического задания студент получает навыки решения		
	антагонистических игр с неполной информацией и навыки решения многошаговых игр со		
	случайными ходами, и навыки решения иерархических игр, решения игры «налоговый сбор».		
16	Правила голосования. Правила парных сравнений		
	В результате выполнения практического задания студент получает навыки применения правил		
	голосования: критерий Копленда, правило Симпсона, правило Борда, и навыки применения правил:		
	- правила парных сравнений;		
	- правило параллельных исключений.		

4.3. Самостоятельная работа обучающихся.

No	Вид самостоятельной работы	
п/п		
1	Работа с лекционным материалом.	
2	Работа с учебной литературой.	
3	Подготовка к практическим занятиям.	
4	Подготовка к промежуточной аттестации.	
5	Подготовка к текущему контролю.	

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Мазалов, В. В. Математическая теория игр и приложения: учебное пособие для вузов / В. В.	https://e.lanbook.com/book/393059 (дата обращения: 08.04.2025)
	Мазалов. — 6-е изд., стер. — Санкт-Петербург:	(4
	Лань, 2024. — 500 с. — ISBN 978-5-507-49481-1 Текст: электронный	

2	Челноков, А. Ю. Теория игр: учебник и	https://urait.ru/bcode/536207 (дата
	практикум для вузов / А. Ю. Челноков. — Москва	обращения: 08.04.2025).
	: Издательство Юрайт, 2024. — 223 с. — (Высшее	
	образование). — ISBN 978-5-534-00233-1 Текст :	
	электронный	
3	Конюховский, П. В. Теория игр : учебник для	https://urait.ru/bcode/536008 (дата
	вузов / П. В. Конюховский, А. С. Малова. —	обращения: 08.04.2025)
	Москва: Издательство Юрайт, 2024. — 252 с. —	
	(Высшее образование). — ISBN 978-5-534-17963-	
	7 Текст : электронный	
4	Шагин, В. Л. Теория игр для экономистов:	https://urait.ru/bcode/511246 (дата
	учебник и практикум / В. Л. Шагин. — 2-е изд.,	обращения: 08.04.2025)
	испр. и доп. — Москва : Издательство Юрайт,	
	2023. — 223 с. — (Высшее образование). — ISBN	
	978-5-534-15424-5 Текст : электронный	
5	Исследование операций в экономике : учебник для	https://urait.ru/bcode/510512 (дата
	вузов / под редакцией Н. Ш. Кремера. — 4-е изд.,	обращения: 08.04.2025).
	перераб. и доп. — Москва : Издательство Юрайт,	
	2023. — 414 с. — (Высшее образование). — ISBN	
	978-5-534-12800-0 Текст : электронный	

- 6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).
- Информационный портал Научная электронная библиотека eLIBRARY.RU (www.elibrary.ru);
- Единая коллекция цифровых образовательных ресурсов (http://window.edu.ru);
- Интернет-университет информационных технологий http://www.intuit.ru/;
 - Научно-техническая библиотека РУТ (МИИТ) (http://library.miit.ru).
- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).
 - Операционная система Windows;
 - Microsoft Office;
 - MS Teams:
 - Поисковые системы.

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Для проведения занятий лекционного типа требуются аудитории, оснащенные компьютерной техникой и наборами демонстрационного оборудования.

9. Форма промежуточной аттестации:

Экзамен в 7 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, доцент, к.н. кафедры «Цифровые технологии управления транспортными процессами»

А.П. Иванова

Согласовано:

Заведующий кафедрой ЦТУТП

В.Е. Нутович

Председатель учебно-методической

комиссии Н.А. Андриянова