МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 09.03.02 Информационные системы и технологии, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Теория информации и кодирования

Направление подготовки: 09.03.02 Информационные системы и

технологии

Направленность (профиль):

Информационные системы и технологии на

транспорте

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5665

Подписал: заведующий кафедрой Нутович Вероника

Евгеньевна

Дата: 22.04.2025

1. Общие сведения о дисциплине (модуле).

Дисциплина «Теория информации и кодирования» является одной из основных теоретических дисциплин, лежащих в основе технических средств, с которыми студенту придется иметь дело в своей практической работе, а также одной из базовых дисциплин для изучения методов защиты компьютерной информации.

Целью дисциплины «Теория информации и кодирования» является:

- изучение студентами математического аппарата информации и кодирования;
- методов и алгоритмов построения помехоустойчивых, корректирующих кодов, предназначенных для обнаружения и исправления ошибок, возникающих при передаче информации в канале связи, а также при ее хранении и переработке.

Задачами дисциплины является:

- изучение принципов построения кодов;
- освоение способов синтеза кода по требуемым показателям достоверности;
- использование аналитических моделей соответствия выбранных кодов требуемым показателям достоверности приёма информации;
 - разработка математической модели источника ошибок в канале связи;
- доказательство работоспособности кодеров и декодеров помехоустойчивых кодов.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-1** Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности;
- **ПК-1** Способен проводить научные исследования при разработке, внедрении и сопровождении информационных технологий и систем на всех этапах жизненного цикла .

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Уметь:

- применять систему фундаментальных знаний (математических, естественнонаучных и инженерных) для формулирования и решения проблем задач защиты информации;
- выяснять приемлемые для пользователей параметры работы сети в условиях нормальной (обычной) работы (базовые параметры).

Знать:

- значение информации и информационной безопасности в развитии современного общества;
 - значимость своей будущей профессии;
- общие принципы функционирования аппаратных средств администрируемой сети.

Владеть:

- навыками использования различных методов кодирования и аналитического аппарата для формализации содержательно сформулированных проблем.
 - навыками построения основных помехоустойчивых кодов.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 4 з.е. (144 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
	Всего	Семестр №5
Контактная работа при проведении учебных занятий (всего):	48	48
В том числе:		
Занятия лекционного типа	32	32
Занятия семинарского типа	16	16

3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 96 академических часа (ов).

- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

	1		
$N_{\underline{0}}$	Тематика лекционных занятий / краткое содержание		
Π/Π			
1	Понятие информации. Задачи и постулаты прикладной теории информации.		
	Рассматриваемые вопросы:		
	- понятие информации;		
	- этапы обращения информации;		
	- информационные системы;		
	- система передачи информации;		
	- задачи и постулаты прикладной теории информации.		
2	Количественная оценка информации.		
	Рассматриваемые вопросы:		
	- свойства энтропии;		
	- энтропия при непрерывном сообщении;		
	- условная энтропия;		
	- взаимная энтропия;		
	- избыточность сообщений.		
3	Эффективное кодирование.		
	Рассматриваемые вопросы:		
	- метод Шеннона-Фано;		
	- метод Хафмана.		
4	Кодирование информации для канала с помехами.		
	Рассматриваемые вопросы:		
	- разновидности помехоустойчивых кодов;		
	- общие принципы использования избыточности;		
	- проверка на четность;		
	- минимальное кодовое расстояние;		
	- связь информационной способности кода (способности кода обнаруживать и исправлять ошибки)		
	с кодовым расстоянием (коды Хэмминга с dmin=3, коды Хэмминга с dmin=4);		
	- понятие качества корректирующего кода.		
5	Скорость передачи информации. Неравенство и теорема Шеннона.		
	Рассматриваемые вопросы:		
	- пропускная способность канала;		
	- энтропийная мощность сигнала;		
	- энтропия помехи.		
6	Преобразование Фурье.		
	Рассматриваемые вопросы:		

$N_{\underline{0}}$		
п/п	Тематика лекционных занятий / краткое содержание	
	- спектр прямоугольного импульса;	
	- сигналы с ограниченным спектром.	
7	Теорема Винера-Хинчина.	
	Рассматриваемые вопросы:	
	- энергетический спектр;	
	- функция корреляции;	
	- манчестерский код;	
	- биполярный квазитроичный код.	
8	Теорема Котельникова.	
	Рассматриваемые вопросы:	
	- технический способ передачи функции с ограниченным спектром и её восстановления на	
	приёмном конце;	
	- шумы наложения;	
	- апертурный эффект.	
9	Передача в базовой полосе частот.	
	Рассматриваемые вопросы:	
	- импульсная и потенциальная передачи;	
	- униполярная и биполярная передачи;	
	- синхронный и асинхронный режимы работы;	
	- влияние помех;	
	- глазковые диаграммы как средство визуализации качества передачи	
10	Передача с модуляцией.	
	Рассматриваемые вопросы:	
	- амплитудная, частотная, фазовая модуляции;	
	- спектр амплитудно-модулированного сигнала;	
	- коэффициент модуляции;	
	- несущий сигнал, несущая частота и боковые частоты;	
	- угловая модуляция;	
	- квадратурная амплитудно-фазовая модуляция;	
	- созвездие - векторная диаграмма, описывающая символ (точку) при КАМ.	

4.2. Занятия семинарского типа.

Практические занятия

№ п/п	Тематика практических занятий/краткое содержание
1	Метод Щеннона-Фано
	В результате практического задания студент получает навык выполнения оптимального
	кодирования методом Шаннона-Фано для двух символов блоками по три элемента, нахождения q
	среднего и энтропии.
2	Метод Хаффмона
	В результате практического задания студент получает навык выполнения оптимального
	кодирования методом Хаффмона для двух символов блоками по три элемента, построения
	бинарного дерева, нахождения q среднего и энтропии
3	Формирование различных типов сигналов для передачи заданной
	последовательности символов.
	В результате практического задания студент получает навык построения сигналов следующих
	видов:
	- потенциальный униполярный двоичный импульс;

$N_{\underline{0}}$	Тематика практических занятий/краткое содержание		
Π/Π			
	- импульсный униполярный двоичный код;		
	- потенциальный биполярный двоичный импульс;		
	- импульсный биполярный двоичный импульс;		
	- потенциальный биполярный четверичный импульс;		
	- импульсный биполярный четверичный импульс;		
	- сигналы Манчестерского кода;		
	- сигналы биполярного квазитроичного кода;		
	- сигналы передачи с троичным кодированием пар.		
4	Исследование частотного спектра прямоугольного импульса для передачи данных		
	со скоростью С (30 вариантов задания скорости С).		
	В результате практического задания студент получает навык построения графика прямоугольного		
	импульса и его спектра в нормализованном масштабе.		
5	Исследование частотного спектра косинусоидального импульса для передачи		
	данных со скоростью С (30 вариантов задания скорости С).		
	В результате практического задания студент получает навык построения графика		
	косинусоидального импульса и его спектра в нормализованном масштабе.		
6	Исследование частотных характеристик импульсных последовательностей при		
	передачах манчестерским и биполярным квазитроичным кодами.		
	В результате практического задания студент получает навык нахождения коэффициентов		
	корреляции, нахождения функции C(w) для манчестерского и биполярного квазитроичного кода.		
7	Исследование частотных характеристик импульсных последовательностей при		
	передаче кодом «2 из 4» для алфавита из 6 символов.		
	В результате практического задания студент получает навык нахождения коэффициентов		
	корреляции, нахождения функции C(w) для «2 из 4».		
8	Исследование эффективности троичного кодирования пар.		
	В результате практического задания студент получает навык нахождения коэффициентов		
	корреляции,, нахождения функции C(w) для случая троичного кодирования пар, построения одного		
	периода для функции $C(W)$ для значений от 0 до $2\Pi/T$.		

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Изучение дополнительной литературы.
2	Подготовка к практическим занятиям.
3	Подготовка к промежуточной аттестации.
4	Подготовка к текущему контролю.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Основы теории информации и кодирования:	https://e.lanbook.com/book/115524
	учебное пособие Березкин, Е. Ф. Санкт-	

	Петербург: Лань, 2019. — 320 с. — ISBN 978-5-	
	8114-4119-8	
2	Основы корректирующего кодирования: теория и	https://e.lanbook.com/book/68473
	лабораторный практикум: учебное пособие	
	Матвеев, Б. В. 2-е изд., стер. — Санкт-Петербург:	
	Лань, 2014. — 192 с. — ISBN 978-5-8114-1631-8.	
3	Бурьяноватый, А. И. Теория передачи сигналов:	URL:
	учебно-методическое пособие / А. И.	https://e.lanbook.com/book/91114
	Бурьяноватый, А. Н. Марикин, В. В. Сероносов.	(дата обращения: 09.10.2025). —
	— Санкт-Петербург : ПГУПС, 2016. — 35 c. —	Режим доступа: для авториз.
	Текст: электронный // Лань: электронно-	пользователей.
	библиотечная система.	
4	Рацеев, С. М. Элементы высшей алгебры и теории	https://e.lanbook.com/book/187575
	кодирования: учебное пособие для вузов. —	(дата обращения: 03.10.2022)
	Санкт-Петербург : Лань, 2022. — 656 с. — ISBN	
	978-5-8114-8565-9. — Текст : электронный // Лань	
	: электронно-библиотечная система.	
5	Попов, И. Ю. Теория информации / И. Ю. Попов,	https://e.lanbook.com/book/218870
	И.В.Блинова. — 3-е изд., стер. — Санкт-	(дата обращения: 03.10.2022)
	Петербург : Лань, 2022. — 160 с. — ISBN 978-5-	
	507-44279-9	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Издательство «Лань» (https://e.lanbook.com/).

Информационный портал Научная электронная библиотека eLIBRARY.RU (www.elibrary.ru).

Научно-техническая библиотека РУТ (МИИТ) (http://library.miit.ru).

Национальный открытый университет (www.intuit.ru).

Форум аналитической информации об информационных технологиях (www.citforum.ru).

IT-документация и компьютерные новости (www.emanual.ru).

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Пакет продуктов Microsoft Office 2016 (Word, Excel, PowerPoint) – лицензионный.

Просмотрщик pdf-файлов Foxit Reader – свободно распространяемый.

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебные аудитории для проведения учебных занятий, оснащенные компьютерной техникой и наборами демонстрационного оборудования.

9. Форма промежуточной аттестации:

Зачет в 5 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

старший преподаватель кафедры «Цифровые технологии управления транспортными процессами»

О.О. Нуждин

Согласовано:

Заведующий кафедрой ЦТУТП

В.Е. Нутович

Председатель учебно-методической

комиссии

Н.А. Андриянова