МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА»

УТВЕРЖДАЮ:

Директор ИУЦТ

С.П. Вакуленко

06 октября 2020 г.

Кафедра «Цифровые технологии управления транспортными

процессами»

Иванова Александра Петровна, к.ф.-м.н., доцент Автор

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Теория оптимального управления

Направление подготовки: 01.03.02 – Прикладная математика и

информатика

Математические модели в экономике и технике Профиль:

Квалификация выпускника: Бакалавр

Форма обучения: очная

Год начала подготовки 2017

Одобрено на заседании

Учебно-методической комиссии

Протокол № 3 05 октября 2020 г.

Председатель учебно-методической

комиссии

Одобрено на заседании кафедры

Протокол № 2 02 октября 2020 г.

Заведующий кафедрой

Н.А. Клычева В.Е. Нутович

1. ЦЕЛИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целями освоения учебной дисциплины Теория оптимального управления являются:

- формирование личности студента, развитие его интеллекта и умения логически и алгоритмически мыслить;
- формирование умений и навыков, необходимых при практическом применении теории оптимального управления при поиске оптимальных решений и их реализации;
- подготовка к изучению специальных курсов, использующих методы оптимального управления.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Учебная дисциплина "Теория оптимального управления" относится к блоку 1 "Дисциплины (модули)" и входит в его вариативную часть.

2.1. Наименования предшествующих дисциплин

Для изучения данной дисциплины необходимы следующие знания, умения и навыки, формируемые предшествующими дисциплинами:

2.1.1. Вариационное исчисление:

Знания: общих определений и понятий, относящихся к ЛНП и к понятиям функционалов и операторов в ЛНП.

Умения: отмечать и обосновывать сходимость последовательностей (близость элементов) в различных ЛНП (прежде всего – в различных функциональных пространствах).

Навыки: владения набором базовых знаний по разделу и подходами к постановке возникающих задач на экстремум.

2.1.2. Дифференциальные уравнения:

Знания: доступных современных информационных и компьютерных технологий, применяемых в исследовательской и прикладной деятельности.

Умения: использовать в научной и познавательной деятельности, а также в социальной сфере профессиональные навыки работы с информационными и компьютерными технологиями.

Навыки: использовать компьютерные технологии в научной и познавательной деятельности.

2.1.3. Методы оптимизации:

Знания: основных понятий теории оптимизации, вариационного исчисления и теории управления, основных классов задач оптимизации и основных алгоритмов решения задач математического программирования.

Умения: применять изученные оптимизационные алгоритмы для решения конкретных практических задач.

Навыки: решения оптимизационных задач, программной реализации методов оптимизации.

2.1.4. Функциональный анализ:

Знания: основных свойств функциональных пространств, свойств непрерывных линейных функционалов и линейных операторов в линейных нормированных пространствах, основных понятий теории меры и интеграла Лебега; основных типов интегральных уравнений и связанных с ними операторов.

Умения: исследовать функционалы и операторы средствами функционального анализа, применять интегралы Лебега и Стилтьеса, исследовать множества в функциональных пространствах и пространствах с мерой, решать интегральные уравнения, решать прикладные задачи с использованием методов функционального анализа.

Навыки: решения задач функционального анализа и решения интегральных уравнений.

2.2. Наименование последующих дисциплин

Результаты освоения дисциплины используются при изучении последующих учебных дисциплин:

2.2.1. Государственная итоговая аттестация

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ), СООТНЕСЕННЫЕ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

В результате освоения дисциплины студент должен:

№ п/п	Код и название компетенции	Ожидаемые результаты
1	ПК-1 способностью собирать, обрабатывать и интерпретировать данные современных научных исследований, необходимые для формирования выводов по соответствующим научным исследованиям	Знать и понимать: устную и письменную речь Уметь: аргументировано и ясно строить устную и письменную речь Владеть: культурой мышления, уметь аргументировано и ясно строить устную и письменную речь;
2	ПК-2 способностью понимать, совершенствовать и применять современный математический аппарат	Знать и понимать: общенаучные базовые знания естественных наук, математики и информатики Уметь: излагать основные факты и концепции, теорий, связанных с прикладной математикой и информатикой Владеть: навыками демонстрации общенаучных базовых знаний естественных наук, математики и информатики, понимание основных фактов, концепций, принципов теорий, связанных с прикладной математикой и информатикой;
3	ПК-7 способностью к разработке и применению алгоритмических и программных решений в области системного и прикладного программного обеспечения	Знать и понимать: понимать и применять в исследовательской и прикладной деятельности современный математический аппараттеории оптимального управления; Уметь: применять в исследовательской и прикладной деятельности современный математический аппарат Владеть: современным математическим аппаратом

4. ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ) В ЗАЧЕТНЫХ ЕДИНИЦАХ И АКАДЕМИЧЕСКИХ ЧАСАХ

4.1. Общая трудоемкость дисциплины составляет:

7 зачетных единиц (252 ак. ч.).

4.2. Распределение объема учебной дисциплины на контактную работу с преподавателем и самостоятельную работу обучающихся

	Количество часов			
Вид учебной работы	Всего по учебному плану	Семестр 7	Семестр 8	
Контактная работа	104	44,15	60,15	
Аудиторные занятия (всего):	104	44	60	
В том числе:				
лекции (Л)	54	30	24	
лабораторные работы (ЛР)(лабораторный практикум) (ЛП)	50	14	36	
Самостоятельная работа (всего)	121	73	48	
Экзамен (при наличии)	27	27	0	
ОБЩАЯ трудоемкость дисциплины, часы:	252	144	108	
ОБЩАЯ трудоемкость дисциплины, зач.ед.:	7.0	4.0	3.0	
Текущий контроль успеваемости (количество и вид текущего контроля)	КР (1), ПК1, ПК2	КР (1), ПК1, ПК2	ПК1	
Виды промежуточной аттестации (экзамен, зачет)	ЗаО, ЭК	ЭК	ЗаО	

4.3. Содержание дисциплины (модуля), структурированное по темам (разделам)

				Виды учебной деятельности в часах/ в том числе интерактивной форме					Формы текущего
№ п/п	Семестр	Тема (раздел) учебной дисциплины	П	JIP	ПЗ/ТП	KCP	CP	Всего	контроля успеваемости и промежу-точной аттестации
1	2	3	4	5	6	7	8	9	10
1	7	Раздел 1 Принцип максимума Л.С. Понтрягина.	16	6/4			15	37/4	
2	7	Тема 1.1 Теорема о необходимых условиях оптимальности методика решения задач оптимального управления	2					2	
3	7	Тема 1.2 Примеры решения задач оптимального управления.	2					2	
4	7	Тема 1.3 Линейные оптимальные быстродействия	2					2	
5	7	Тема 1.4 Решение простейшей задачи о быстродействии в форме программного управления и в форме синтеза.	2	6/4			15	23/4	ПК1, Контрольная работа № 1
6	7	Тема 1.5 Семейство изохрон. Аналитическое и численное построение семейства изохрон.	2					2	
7	7	Тема 1.6 Фазовые портреты линейных оптимальных систем с вещественными собственными значениями.	2					2	
8	7	Тема 1.7 Фазовые портреты линейных оптимальных систем с комплексными собственными значениями	2					2	
9	7	Тема 1.8 Численные методы расчета оптимальных программ.	2					2	
10	7	Раздел 2 Динамическое программирование в задачах оптимального управления. Принцип оптимальности. Уравнение Беллмана в частных производных. Задача АКОР	14	8/2			22	44/2	

						еятельнос герактивн			Формы текущего
№ п/п	Семестр	Тема (раздел) учебной дисциплины	Л	ЛР	ПЗ/ТП	KCP	CP	Всего	контроля успеваемости и промежу- точной аттестации
1	2	3	4	5	6	7	8	9	10
11	7	Тема 2.1 Принцип оптимальности и вывод рекуррентного уравнения динамического программирования.	2					2	
12	7	Тема 2.2 Вывод уравнения Беллмана в частных производных.	2					2	
13	7	Тема 2.3 Постановка нестационарной задачи АКОР. Уравнение Беллмана для этой задачи.	2					2	
14	7	Тема 2.4 Решение нестационарной задачи АКОР.	2	8/2			22	32/2	ПК2, Контрольная работа № 2
15	7	Тема 2.5 Постановка стационарной задачи АКОР.	2					2	
16	7	Тема 2.6 Решение стационарной задачи АКОР.	2					2	
17	7	Тема 2.7 Метод Репина - Третьякова.	2					2	
18	7	Экзамен					36	63	КР, ЭК
19	8	Раздел 4 Решение задач оптимального управления методом пристрелки.	12	18/4			15	45/4	
20	8	Тема 4.1 Связь сопряженных переменных с моментами переключения.	2					2	
21	8	Тема 4.2 Алгоритм метода пристрелки для объектов с вещественными собственными значениями линеаризованной модели.	4	18/4			15	37/4	
22	8	Тема 4.4 Алгоритм метода пристрелки для объектов с комплексными собственными значениями линеаризованной модели.	6					6	
23	8	Раздел 5 Оптимальное управление объектами, описываемыми уравнениями в частных	12	18/6			15	45/6	

	Виды учебной деятельности в часах/								Формы
	ф		в том числе интерактивной форме						текущего
№ п/п	Семестр	Тема (раздел) учебной дисциплины	Л	JIP	ПЗ/ГП	KCP	CP	Всего	контроля успеваемости и промежу- точной аттестации
1	2	3	4	5	6	7	8	9	10
		производных.							
24	8	Тема 5.2 Решение задачи оптимального управления для уравнения теплопроводности	4	18/6			15	37/6	ПК1, Контрольная работа № 3
25	8	Тема 5.4 Численная реализация оптимального управления уравнением теплопроводности.	2					2	
26	8	Тема 5.5 Примеры содержательной постановки задач оптимального управления распределенными объектами.	2					2	
27	8	Тема 5.6 Математические модели распределенных объектов.	2					2	
28	8	Тема 5.7 Формулировка принципа максимума для уравнений в частных производных.	2					2	
29	8	Раздел 6 Дифференцированный зачёт					18	18	ЗаО
30		Всего:	54	50/16			121	252/16	

4.4. Лабораторные работы / практические занятия

Практические занятия учебным планом не предусмотрены.

Лабораторные работы предусмотрены в объеме 50 ак. ч.

№ п/п	№ семестра	Тема (раздел) учебной дисциплины	Наименование занятий	Всего ча- сов/ из них часов в интерак- тивной форме
1	2	3	4	5
1	7	РАЗДЕЛ 1 Принцип максимума Л.С. Понтрягина. Тема: Решение простейшей задачи о быстродействии в форме программного управления и в форме синтеза.	Решение задачи быстродействия	6 / 4
2	7	РАЗДЕЛ 2 Динамическое программирование в задачах оптимального управления. Принцип оптимальности. Уравнение Беллмана в частных производных. Задача АКОР Тема: Решение нестационарной задачи АКОР.	Решение задачи АКОР	8/2
3	8	РАЗДЕЛ 4 Решение задач оптимального управления методом пристрелки. Тема: Алгоритм метода пристрелки для объектов с вещественными собственными значениями линеаризованной модели.	Алгоритм метода пристрелки для объектов с вещественными собственными значениями линеаризованной модели	18 / 4
4	8	РАЗДЕЛ 5	Решение задачи оптимального управления для уравнения теплопроводности ВСЕГО:	18 / 6 50/16

4.5. Примерная тематика курсовых проектов (работ)

Вариант 1.

- 1) Поставить и исследовать задачу оптимального быстродействия.
- 2) Разработать программу для численного решения двухточечной задачи оптимального

быстродействия.

- 3) Найти оптимальное управление и оптимальную траекторию для заданного начального условия.
- 4) Для начального условия из п.3 построить зависимость оптимального времени от величины ограничения на управление.

Вариант 2.

- 1) Поставить задачу оптимального быстродействия и найти вид оптимального управления с помощью принципа максимума.
- 2) Разработать программу для численного решения задачи оптимального быстродействия с заданными граничными условиями.
- 3) Вычислить оптимальное управление и оптимальную траекторию для заданного начального условия.
- 4) Построить зависимость оптимального времени от начального значения координаты положения объекта.

Вариант 3.

- 1) Поставить и исследовать задачу оптимального быстродействия.
- 2) Разработать алгоритм численного решения задачи оптимального быстродействия для произвольных начальных условий.
- 3) Найти оптимальное управление и оптимальную траекторию для заданного начального условия в окрестности границы области управляемости.
- 4) Оценить размеры области управляемости по координате положения объекта.

Вариант 4.

- 1) Поставить задачу оптимального быстродействия и найти вид оптимального управления с помощью принципа максимума.
- 2) Разработать и реализовать алгоритм численного решения задачи оптимального быстродействия.
- 3) Построить оптимальные управления и оптимальные траектории для нескольких начальных точек.
- 4) Численно определить зависимость размера области управляемости по координате положения объекта от ограничения на управляющее воздействие.

Вариант 5.

- 1) Поставить задачу АКОР с учетом требования асимптотической устойчивости и стационарности системы объект-регулятор.
- 2) Решить задачу АКОР методом динамического программирования.
- 3) Найти непосредственные показатели качества переходных процессов по координате положения для системы с оптимальным регулятором.
- 4) Построить зависимости непосредственных показателей качества от коэффициентов функционала.

Вариант 6.

- 1) Поставить задачу АКОР для стационарной системы объект-регулятор.
- 2) Вывести и решить матричное уравнение для коэффициентов регулятора.
- 3) Определить время регулирования и перерегулирование для процессов в оптимальной системе.
- 4) Найти коэффициенты функционала, обеспечивающие апериодические переходные процессы по координате положения объекта.

Вариант 7.

- 1) Поставить задачу АКОР с учетом требования асимптотической устойчивости и стационарности системы объект-регулятор.
- 2) Разработать программу для численного решения задачи АКОР.
- 3) Разработать процедуру вычисления показателей качества переходных процессов для системы с оптимальным регулятором.
- 4) Построить на комплексной плоскости годографы корней характеристического уравнения при изменении коэффициентов функционала.

Вариант 8.

- 1) Поставить задачу АКОР для стационарной системы объект-регулятор.
- 2) Разработать алгоритм и программу для вычисления коэффициентов оптимального регулятора.
- 3) Найти показатели качества переходных процессов для системы с оптимальным регулятором.
- 4) Построить переходные процессы с учетом реальных измерителей координат состояния. Определить требования к постоянным времени измерителей, обеспечивающим близость показателей качества при идеальных и реальных измерениях.

Вариант 9.

- 1) Поставить задачу АКОР для управления объектом на конечном интервале.
- 2) Разработать алгоритм и программу для вычисления функциональных коэффициентов оптимального регулятора.
- 3) Разработать программу для исследования процессов в замкнутой системе.
- 4) Построить зависимости точности конечного состояния объекта от коэффициентов терминального члена функционала.

Вариант 10.

- 1) Поставить и исследовать задачу оптимального быстродействия.
- 2) Разработать алгоритм численного решения задачи оптимального быстродействия для произвольных начальных условий.
- 3) Найти оптимальное управление и оптимальную траекторию для заданного начального условия в окрестности границы области управляемости.
- 4) Оценить размеры области управляемости по координате положения объекта.

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Преподавание дисциплины осуществляется в форме лекций и лабораторных занятий. Лекции проводятся в традиционной классно-урочной организационной форме, по типу управления познавательной деятельностью, и на 100% являются традиционными классически-лекционными (объяснительно-иллюстративные).

Лабораторные занятия проходят в компьютерных аудиториях и нацелены максимально на самостоятельную работу студентов.

Самостоятельная работа студента организована с использованием традиционных видов работы. К традиционным видам работы относятся отработка лекционного материала и отработка отдельных тем по учебным пособиям.

Оценка полученных знаний, умений и навыков основана на модульно-рейтинговой технологии. Фонды оценочных средств освоенных компетенций включают как вопросы теоретического характера для оценки знаний, так и задания практического содержания для оценки умений и навыков. Теоретические знания проверяются путём применения таких организационных форм, как индивидуальные и групповые решения задач, решение тестовых заданий с использованием компьютеров или на бумажных носителях. Проведение занятий по дисциплине возможно с применением электронного обучения и пистанционных образовательных технологий, реализуемые с применением

проведение занятии по дисциплине возможно с применением электронного обучения дистанционных образовательных технологий, реализуемые с применением информационно-телекоммуникационных сетей при опосредованном (на расстоянии) взаимодействии обучающихся и педагогических работников.

В процессе проведения занятий с применением электронного обучения и дистанционных образовательных технологий применяются современные образовательные технологии, такие как (при необходимости):

- использование современных средств коммуникации;
- электронная форма обмена материалами;
- дистанционная форма групповых и индивидуальных консультаций;
- использование компьютерных технологий и программных продуктов, необходимых для сбора и систематизации информации, проведения требуемых программой расчетов и т.д.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

№ п/п	№ семестра	Тема (раздел) учебной дисциплины	Вид самостоятельной работы студента. Перечень учебно-методического обеспечения для самостоятельной работы	Всего часов
1	2	3	4	5
1	7	РАЗДЕЛ 1 Принцип максимума Л.С. Понтрягина. Тема 4: Решение простейшей задачи о быстродействии в форме программного управления и в форме синтеза.	Решение задач, подготовка к выполнению лабораторной работы, изучение литературы[1], стр. 23-40, 77-81	15
2	7	РАЗДЕЛ 2 Динамическое программирование в задачах оптимального управления. Принцип оптимальности. Уравнение Беллмана в частных производных. Задача АКОР Тема 4: Решение нестационарной задачи АКОР.	Решение задач, подготовка к выполнению лабораторной работы, изучение литературы[1], стр. 41-64	22
3	7	РАЗДЕЛ 3 Экзамен	Подготовка к экзамену. Изучение литературы[3], стр. все; [4], стр. все; [5], стр. 20-257; [2]	36
4	8	РАЗДЕЛ 4 Решение задач оптимального управления методом пристрелки. Тема 2: Алгоритм метода пристрелки для объектов с вещественными собственными значениями линеаризованной модели.	Решение задач, подготовка к выполнению лабораторной работы, изучение литературы[5]	15
5	8	РАЗДЕЛ 5 Оптимальное управление объектами, описываемыми уравнениями в частных производных. Тема 2: Решение задачи оптимального управления для уравнения теплопроводности	Решение задач, подготовка к выполнению лабораторной работы, изучение литературы[5]	15
6	8	РАЗДЕЛ 6 Дифференцированный зачёт	Подготовка к теоретическому зачету. Изучение литературы [5]; [3]; [4]	18
	1		113) 1011110 111110pa1 ypii [3], [3], [7]	

7. ПЕРЕЧЕНЬ ОСНОВНОЙ И ДОПОЛНИТЕЛЬНОЙ ЛИТЕРАТУРЫ, НЕОБХОДИМОЙ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

7.1. Основная литература

				Используется
№	Наименование	Автор (ы)	Год и место издания	при изучении
п/п	Патменование	ивтор (ві)	Место доступа	разделов, номера
				страниц
1	Теория оптимального	Эпштейн Г.Л.	М.: МИИТ , 2010	Раздел 1 [стр. 23-
	управления. Учебное		НТБ МИИТ	40, 77-81], Раздел
	пособие.			2 [стр. 41-64]
2	Теория оптимального	Эпштейн Г.Л.	М.: МИИТ, 2007	Раздел 3
	управления. Методические		НТБ МИИТ	, ,
	указания для выполнения			
	курсовой рабо-ты.			
3	Введение в теорию	Эпштейн Г.Л., Иванова	М.: МИИТ, 2016	Раздел 3 [стр.
	оптимального управления.	А.П.	НТБ МИИТ	все], Раздел 6
	Часть 1.			
4	Введение в теорию	Эпштейн Г.Л., Иванова	М.: МИИТ, 2016	Раздел 3 [стр.
	оптимального управления.	А.П.	НТБ МИИТ	все], Раздел 6
	Часть 2.			37, 4

7.2. Дополнительная литература

№ п/п	Наименование	Автор (ы)	Год и место издания Место доступа	Используется при изучении разделов, номера
5	Оптимальное управление	Алексеев В. М., Тихомиров В. М., Фомин С. В.	М.: ФИЗМАТЛИТ, 2005 НТБ МИИТ	страниц Раздел 3 [стр. 20- 257], Раздел 4, Раздел 5, Раздел 6
6	Сборник задач по оптимизации.	Алексеев В. М., Галеев Э. М., Тихомиров В. М.	М.: ФИЗМАТЛИТ,, 2005 НТБ МИИТ	Все разделы
7	Сборник задач по оптимизации. Теория. Примеры. Задачи	В.М.Алексеев, Э.М.Галеев, В.М.Тихомиров	Наука. Гл. ред. физ мат. лит., 1984 НТБ (фб.); НТБ (чз.1)	Все разделы
8	Оптимальное управление	В.М. Алексеев, В.М. Тихомиров, С.В. Фомин	Наука. Гл. ред. физ мат. лит., 1979 НТБ (фб.)	Все разделы

8. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ "ИНТЕРНЕТ", НЕОБХОДИМЫЕ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

- 1. http://library.miit.ru/ электронно-библиотечная система Научно-технической библиотеки МИИТ.
- 2. https://s3.amazonaws.com/MusicNotes/prak.pdf. Линейная теория оптимального управления. Ю.Н. Киселев, С.Н. Аввакумов, М.В. Орлов. М. МГУ, 2007, 270 с.
- 3. http://rzd.ru/ сайт ОАО «РЖД».
- 3. http://elibrary.ru/ научно-электронная библиотека.
- 4. Поисковые системы: Yandex, Google, Mail.

9. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Для проведения лекционных занятий необходима специализированная лекционная аудитория с мультимедиа аппаратурой и интерактивной доской.

Для проведения практических занятий необходимы компьютеры с рабочими местами в компьютерном классе. Компьютеры должны быть обеспечены стандартными лицензионными программными продуктами и обязательно программным продуктом Microsoft Office не ниже Microsoft Office 2007 (2013) и MathCad.

При организации обучения по дисциплине с применением электронного обучения и дистанционных образовательных технологий необходим доступ каждого студента к информационным ресурсам — библиотечному фонду Университета, сетевым ресурсам и информационно-телекоммуникационной сети «Интернет».

В случае проведении занятий с применением электронного обучения и дистанционных образовательных технологий может понадобиться наличие следующего программного обеспечения (или их аналогов): ОС Windows, Microsoft Office, Интернет-браузер, Microsoft Teams и т.д.

В образовательном процессе, при проведении занятий с применением электронного обучения и дистанционных образовательных технологий, могут применяться следующие средства коммуникаций: ЭИОС РУТ(МИИТ), Microsoft Teams, электронная почта, скайп, Zoom, WhatsApp и т.п.

10. ОПИСАНИЕ МАТЕРИАЛЬНО ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Для проведения аудиторных занятий и самостоятельной работы требуется:

- 1. Рабочее место преподавателя с персональным компьютером, подключённым к сетям INTERNET и INTRANET.
- 2. Специализированная лекционная аудитория с мультимедиа аппаратурой и интерактивной доской.
- 3. Компьютерный класс. Рабочие места студентов в компьютерном классе, подключённые к сетям INTERNET и INTRANET
- 4. Для проведения практических занятий: компьютерный класс; компьютеры с минимальными требованиями Pentium 4, ОЗУ 4 ГБ, HDD 100 ГБ, USB 2.0.

В случае проведения занятий с применением электронного обучения и дистанционных образовательных технологий необходимо наличие компьютерной техники, для организации коллективных и индивидуальных форм общения педагогических работников со студентами, посредством используемых средств коммуникации. Допускается замена оборудования его виртуальными аналогами.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

Обучающимся необходимо помнить, что качество полученного образования в немалой степени зависит от активной роли самого обучающегося в учебном процессе. Обучающийся должен быть нацелен на максимальное усвоение подаваемого лектором материала, после лекции и во время специально организуемых индивидуальных встреч он может задать лектору интересующие его вопросы.

Лекционные занятия составляют основу теоретического обучения и должны давать систематизированные основы знаний по дисциплине, раскрывать состояние и перспективы развития соответствующей области науки, концентрировать внимание обучающихся на наиболее сложных и узловых вопросах, стимулировать их активную познавательную деятельность и способствовать формированию творческого мышления. Главная задача лекционного курса — сформировать у обучающихся системное представление об изучаемом предмете, обеспечить усвоение будущими специалистами

основополагающего учебного материала, принципов и закономерностей развития соответствующей научно-практической области, а также методов применения полученных знаний, умений и навыков.

Основные функции лекций: 1. Познавательно-обучающая; 2. Развивающая; 3. Ориентирующе-направляющая; 4. Активизирующая; 5. Воспитательная; 6. Организующая; 7. Информационная.

Выполнение практических заданий служит важным связующим звеном между теоретическим освоением данной дисциплины и применением ее положений на практике. Они способствуют развитию самостоятельности обучающихся, более активному освоению учебного материала, являются важной предпосылкой формирования профессиональных качеств будущих специалистов.

Проведение практических занятий не сводится только к органическому дополнению лекционных курсов и самостоятельной работы обучающихся. Их вместе с тем следует рассматривать как важное средство проверки усвоения обучающимися тех или иных положений, даваемых на лекции, а также рекомендуемой для изучения литературы; как форма текущего контроля за отношением обучающихся к учебе, за уровнем их знаний, а следовательно, и как один из важных каналов для своевременного подтягивания отстающих обучающихся.

При подготовке специалиста важны не только серьезная теоретическая подготовка, знание основ надежности подвижного состава, но и умение ориентироваться в разнообразных практических ситуациях, ежедневно возникающих в его деятельности. Этому способствует форма обучения в виде практических занятий. Задачи практических занятий: закрепление и углубление знаний, полученных на лекциях и приобретенных в процессе самостоятельной работы с учебной литературой, формирование у обучающихся умений и навыков работы с исходными данными, научной литературой и специальными документами. Практическому занятию должно предшествовать ознакомление с лекцией на соответствующую тему и литературой, указанной в плане этих занятий. Самостоятельная работа может быть успешной при определенных условиях, которые необходимо организовать. Ее правильная организация, включающая технологии отбора целей, содержания, конструирования заданий и организацию контроля, систематичность самостоятельных учебных занятий, целесообразное планирование рабочего времени позволяет привить студентам умения и навыки в овладении, изучении, усвоении и систематизации приобретаемых знаний в процессе обучения, привить навыки повышения профессионального уровня в течение всей трудовой деятельности.

Каждому студенту следует составлять еженедельный и семестровый планы работы, а также план на каждый рабочий день. С вечера всегда надо распределять работу на завтра. В конце каждого дня целесообразно подводить итог работы: тщательно проверить, все ли выполнено по намеченному плану, не было ли каких-либо отступлений, а если были, по какой причине это произошло. Нужно осуществлять самоконтроль, который является необходимым условием успешной учебы. Если что- то осталось невыполненным, необходимо изыскать время для завершения этой части работы, не уменьшая объема недельного плана.

Компетенции обучающегося, формируемые в результате освоения учебной дисциплины, рассмотрены через соответствующие знания, умения и владения. Для проверки уровня освоения дисциплины предлагаются вопросы к экзамену и тестовые материалы, где каждый вариант содержит задания, разработанные в рамках основных тем учебной дисциплины и включающие терминологические задания.

Фонд оценочных средств являются составной частью учебно-методического обес-печения процедуры оценки качества освоения образовательной программы и обеспечивает повышение качества образовательного процесса и входит, как приложение, в состав рабочей программы дисциплины.

Основные методические указания для обучающихся по дисциплине указаны в разделе

основная и дополнительная литература.

Основными направлениями самостоятельной работы студентов в течение каждого учебного семестра являются:

- текущая работа над учебным материалом ознакомление с рекомендуемой литературой и источниками;
- подготовка к очередным практическим занятиям;
- ведение самостоятельных записей на основании работы со специальной и общенаучной литературой из предложенного списка;
- изучение материалов, предусмотренных для самостоятельного изучения;
- подготовка к выполнению и выполнение домашней контрольной работы; подготовка к экзамену.