МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА»

УТВЕРЖДАЮ:

Директор ИУЦТ

С.П. Вакуленко

02 июня 2021 г.

Кафедра «Цифровые технологии управления транспортными

процессами»

Автор Соймина Елена Яковлевна, к.т.н.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Теория принятия решений

Направление подготовки: 09.03.02 – Информационные системы и

технологии

Профиль: Информационные системы и технологии на

транспорте

Квалификация выпускника: Бакалавр

Форма обучения: очная

Год начала подготовки 2019

Одобрено на заседании

Учебно-методической комиссии института

Протокол № 6 01 июня 2021 г.

Председатель учебно-методической

комиссии

Н.А. Клычева

Одобрено на заседании кафедры

Протокол № 4 01 июня 2021 г.

Заведующий кафедрой

В.Е. Нутович

Рабочая программа учебной дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5665

Подписал: Заведующий кафедрой Нутович Вероника

Евгеньевна

Дата: 01.06.2021

1. ЦЕЛИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Цель изучения дисциплины – теоретическое и практическое освоение подходов к принятию решений при проектировании информационных систем на основе применения методологии исследования операций и методов теории оптимизации. . Задачи дисциплины:

- дать базовые знания по методологии исследования операций и теории оптимизации;
- привить умения математической постановки задач принятия решений.

Виды профессиональной деятельности:

- проектно-конструкторская;
- научно-исследовательская.

Дисциплина предназначена для получения знаний и решения следующих профессиональных задач (в соответствии с видами деятельности): проектно-конструкторская деятельность:

- техническое проектирование (реинжиниринг);
- рабочее проектирование;
- выбор исходных данных для проектирования;
- моделирование процессов и систем; научно-исследовательская деятельность:
- сбор, анализ научно-технической информации, отечественного и зарубежного опыта по тематике исследования;
- участие в работах по проведению вычислительных экспериментов с целью проверки используемых математических моделей.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Учебная дисциплина "Теория принятия решений" относится к блоку 1 "Дисциплины (модули)" и входит в его вариативную часть.

2.1. Наименования предшествующих дисциплин

Для изучения данной дисциплины необходимы следующие знания, умения и навыки, формируемые предшествующими дисциплинами:

2.1.1. Математика:

Знания: основы дифференциального и интегрального исчисления, их применения;

Умения: исследовать функции средствами дифференциального исчисления и строить их графики, применять основные методы интегрирования, применять определенные интегралы для решения различных задач;

Навыки: владения методами математического описания физических явлений и процессов, определяющих принципы работы различных технических устройств.

2.1.2. Физика:

Знания: основы научно-исследовательской деятельности;

Умения: принимать проектные решения, осуществлять постановку и выполнять эксперименты по проверке их корректности и эффективности;

Навыки: навыками реализации научно-исследовательской деятельности, постановки эксперимента, проверки корректности результатов.

2.2. Наименование последующих дисциплин

Результаты освоения дисциплины используются при изучении последующих учебных дисциплин:

2.2.1. Защита информации

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ), СООТНЕСЕННЫЕ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

В результате освоения дисциплины студент должен:

№ п/п	Код и название компетенции	Ожидаемые результаты
1	ПКР-2 Способность проектировать системы поддержки принятия решений при управлении транспортным комплексом;	ПКР-2.1 Знает основные модели и методы принятия решений при управлении транспортным комплексом. ПКР-2.2 Умеет разрабатывать проектные решения отдельных частей АСУП и АСУТП на транспорте. ПКР-2.3 Владеет навыками представления результатов проектирования систем поддержки принятия решений на транспорте.
2	УК-1 Способен осуществлять поиск, критический анализ информации, применять системный подход для решения поставленных задач;	УК-1.1 Анализирует задачу, выделяя ее базовые составляющие. УК-1.2 Определяет, интерпретирует и ранжирует информацию, требуемую для решения поставленной задачи. УК-1.3 Осуществляет поиск информации для решения поставленной задачи по различным типам запросов, рассматривает и предлагает возможные варианты решения поставленной задачи, оценивая их достоинства и недостатки. УК-1.4 Осуществляет поиск информации для решения поставленной задачи по различным типам запросов, рассматривает и предлагает возможные варианты решения поставленной задачи, оценивая их достоинства и недостатки. УК-1.5 Способен анализировать основные закономерности физических явлений и процессов.
3	УК-2 Способен определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм и имеющихся ресурсов и ограничений.	УК-2.1 Определяет круг задач в рамках поставленной цели, определяет связи между ними. УК-2.2 Предлагает способы решения поставленных задач и ожидаемые результаты; оценивает предложенные способы с точки зрения соответствия цели проекта. УК-2.3 Планирует реализацию задач в зоне своей ответственности с учетом имеющихся ресурсов и ограничений, действующих правовых норм. УК-2.4 Выполняет задачи в зоне своей ответственности в соответствии с запланированными результатами и точками контроля, при необходимости корректирует способы решения задач. УК-2.5 Представляет результаты проекта, предлагает возможности их использования и/или совершенствования.

4. ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ) В ЗАЧЕТНЫХ ЕДИНИЦАХ И АКАДЕМИЧЕСКИХ ЧАСАХ

4.1. Общая трудоемкость дисциплины составляет:

3 зачетные единицы (108 ак. ч.).

4.2. Распределение объема учебной дисциплины на контактную работу с преподавателем и самостоятельную работу обучающихся

	Количеств	о часов
Вид учебной работы	Всего по учебному плану	Семестр 6
Контактная работа	64	64,15
Аудиторные занятия (всего):	64	64
В том числе:		
лекции (Л)	32	32
практические (ПЗ) и семинарские (С)	32	32
Самостоятельная работа (всего)	44	44
ОБЩАЯ трудоемкость дисциплины, часы:	108	108
ОБЩАЯ трудоемкость дисциплины, зач.ед.:	3.0	3.0
Текущий контроль успеваемости (количество и вид текущего контроля)	ПК1, ПК2	ПК1, ПК2
Виды промежуточной аттестации (экзамен, зачет)	ЗаО	ЗаО

4.3. Содержание дисциплины (модуля), структурированное по темам (разделам)

					небной де нисле инт				Формы текущего
№ п/п	Семестр	Тема (раздел) учебной дисциплины	Л	ЛР	ПЗ/ІП	KCP	CP	Всего	контроля успеваемости и промежу-точной аттестации
1	2	3	4	5	6	7	8	9	10
1	6	Раздел 1 Введение	6		12		10	28	
2	6	Тема 1.1 Определения понятий: система, структура, организация, цели, критерии, модели. Практические задачи теории принятия решений. Процедуры принятия решений с использованием средств вычислительной техники. Основные этапы исследования операций: определение целей, выбор критериев, формулировка проблемы, построение модели, поиск решения, анализ решения, реализация. Классификация	6					6	
3	6	задач. Раздел 2 Методы решения задач линейного	6		10		14	30	ПК1, (тестирование)
4	6	программирования Тема 2.1 Общая задача линейного программирования Многоугольник ограничений, линии уровня целевой функции, угловые, граничные и внутренние точки Графический метод решения. Симплекс – метод решения задачи линейного программирования. Свободные и базисные переменные. Поиск опорного решения. Поиск оптимального решения. Двойственная задача линейного программирования. Теоремы двойственности. Применение теории двойственности в практических задачах Транспортная задача линейного программирования. Поиск опорного плана: метод	6					6	

	0.		Виды учебной деятельности в часах/ в том числе интерактивной форме						
№ п/п	Семестр	Тема (раздел) учебной дисциплины	Ц	JIP	ПЗ/ТП	KCP	CP	Всего	контроля успеваемости и промежу-точной аттестации
1	2	3	4	5	6	7	8	9	10
		северо-западного угла, метод минимального элемента. Методы решения транспортной задачи: метод последовательного улучшения, метод потенциалов. Примеры.							
5	6	Раздел 3 Методы решения задач нелинейного программирования	6		4		20	30	
6	6	Тема 3.1 Аналитические методы решения при отсутствии ограничений. Пояснение теоремы Куна-Таккера. Метод неопределенных множителей Лагранжа. Поисковые методы решения задач нелинейного программирования. Методы дихотомии, золотого сечения, перебора, шаговые методы. Приемы ускорения сходимости. Методы поиска в многомерном пространстве: метод наискорейшего спуска, метод покоординатного спуска, метод Ньютона-Рафсона. Анализ сходимости.	6					6	
7	6	Раздел 4 Задачи выбора варианта решения	6		6			12	ПК2, (тестирование)
8	6	Тема 4.1 Постановка задачи многоэтапного выбора. Понятие о динамическом программировании. Принцип оптимальности. Функциональное уравнение Беллмана. Задача распределения ресурса. Задача выбора маршрута в транспортной сети. Выбор решения в условиях неопределенности. Источники неопределенности. Элементы теории статистических решений. Критерии выбора: критерий Байеса, критерий Лапласа,	6					6	

			Виды учебной деятельности в часах/ в том числе интерактивной форме						Формы текущего
№ п/п	Семестр	Тема (раздел) учебной дисциплины	Л	JIP	ПЗ/ТП	KCP	CP	Всего	контроля успеваемости и промежу- точной аттестации
1	2	3	4	5	6	7	8	9	10
		критерий Вальда, критерий минимального риска Сэвиджа, критерий Гурвица. Области применения критериев							
9	6	Раздел 5 Прогнозирование временных рядов	8					8	
10	6	Тема 5.1 Постановка задачи прогнозирования временных рядов. Классификация методов прогнозирования.	8					8	
11	6	Раздел 6 Дифференцированный зачет						0	ЗаО
12		Всего:	32		32		44	108	

4.4. Лабораторные работы / практические занятия

Лабораторные работы учебным планом не предусмотрены.

Практические занятия предусмотрены в объеме 32 ак. ч.

№ п/п	№ семестра	Тема (раздел) учебной дисциплины	Наименование занятий	Всего ча- сов/ из них часов в интерак- тивной форме
1	2	3	4	5
1	6	РАЗДЕЛ 1 Введение	Выбор критериев оптимальности решений	6
2	6	РАЗДЕЛ 1 Введение	Математическая постановка задачи принятия решения	6
3	6	РАЗДЕЛ 2 Методы решения задач линейного программирования	Решение задач линейного программирования (графическим методом, смиплекс-методом)	4
4	6	РАЗДЕЛ 2 Методы решения задач линейного программирования	Двойственные задачи линейного программирования.	4
5	6	РАЗДЕЛ 2 Методы решения задач линейного программирования	Транспортная задача	2
6	6	РАЗДЕЛ 3 Методы решения задач нелинейного программирования	Аналитические методы решения	2
7	6	РАЗДЕЛ 3 Методы решения задач нелинейного программирования	Поисковые методы решения задач нелинейного программирования	2
8	6	РАЗДЕЛ 4 Задачи выбора варианта решения	Методы прогнозирования временных рядов	6
			ВСЕГО:	32/0

4.5. Примерная тематика курсовых проектов (работ)

Курсовые работы (проекты) не предусмотрены.

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Лекционные занятия должны проходить при наличии у студентов опорного конспекта, который лектор размещает на сайте кафедры, а студенты имеют возможность скачать и распечатать.

Для подготовки к контрольным работам преподаватель предоставляет студентам совокупность типовых задач, которые студенты решают самостоятельно, общаясь с преподавателем через интерактивный сайт кафедры, а также на практических занятиях Перечень необходимых технических средств обучения, используемых в учебном процессе для освоения дисциплины, и способы их применения:

компьютерное и мультимедийное оборудование;

пакет прикладных обучающих программ;

видео-аудиовизуальные средства обучения;

электронная библиотека курса;

ссылки на Интернет-ресурсы.

Проведении занятий по дисциплине (модулю) возможно с применением электронного обучения и дистанционных образовательных технологий, реализуемые с применением информационно-телекоммуникационных сетей при опосредованном (на расстоянии) взаимодействии обучающихся и педагогических работников.

В процессе проведения занятий с применением электронного обучения и дистанционных образовательных технологий применяются современные образовательные технологии, такие как (при необходимости):

- использование современных средств коммуникации;
- электронная форма обмена материалами;
- дистанционная форма групповых и индивидуальных консультаций;
- использование компьютерных технологий и программных продуктов, необходимых для сбора и систематизации информации, проведения требуемых программой расчетов и т.д.

Преподавание дисциплины «Теория принятия решений» осуществляется в форме лекций, практических занятий и лабораторных работ.

- Лекции проводятся в традиционной классно-урочной организационной форме, по типу управления познавательной деятельностью и на 50 % являются традиционными классически-лекционными (объяснительно-иллюстративные), и на 50 % с использованием интерактивных (диалоговых) технологий.
- Практические занятия организованы с использованием технологий развивающего обучения. Часть практического курса выполняется в виде традиционных практических занятий (объяснительно-иллюстративное решение задач) в объёме 8 часов. Остальная часть практического курса (10 часов) проводится с использованием интерактивных (диалоговые) технологий, в том числе разбор и анализ конкретных ситуаций, электронный практикум (решение проблемных поставленных задач с помощью современной вычислительной техники и исследование моделей); технологий, основанных на коллективных способах обучения.
- Самостоятельная работа студента организована с использованием традиционных видов работы и интерактивных технологий. К традиционным видам работы (13 часов) относятся отработка лекционного материала и отработка отдельных тем по учебным пособиям. К интерактивным (диалоговым) технологиям (20 часов) относится отработка отдельных тем по электронным пособиям, подготовка к текущему и промежуточному контролю, интерактивные консультации в режиме реального времени по специальным разделам и технологиям, основанным на коллективных способах самостоятельной работы студентов.
- Оценка полученных знаний, умений и навыков основана на модульно-рейтинговой технологии. Весь курс разбит на 5 разделов, представляющих собой логически завершенный объём учебной информации. Фонды оценочных средств освоенных компетенций включают как вопросы теоретического характера для оценки знаний, так и

задания практического содержания (решение ситуационных задач, анализ конкретных ситуаций, работа с данными) для оценки умений и навыков. Теоретические знания проверяются путём применения таких организационных форм, как индивидуальные и групповые решения ситуационных задач, решение тестов с использованием компьютеров или на бумажных носителях.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

№ п/п	№ семестра	Тема (раздел) учебной дисциплины	Вид самостоятельной работы студента. Перечень учебно-методического обеспечения для самостоятельной работы	Всего часов
1	2	3	4	5
1	6	РАЗДЕЛ 1 Введение	Подготовка к тестированию	10
2	6	РАЗДЕЛ 2 Методы решения задач линейного программирования	Самостоятельное решение задач по разделам 1 и 2. Подготовка к контрольной работе №1.	14
3	6	РАЗДЕЛ 3 Методы решения задач нелинейного программирования	Самостоятельное решение задач по разделу 3	20
			ВСЕГО:	44

7. ПЕРЕЧЕНЬ ОСНОВНОЙ И ДОПОЛНИТЕЛЬНОЙ ЛИТЕРАТУРЫ, НЕОБХОДИМОЙ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

7.1. Основная литература

№ п/п	Наименование	Автор (ы)	Год и место издания Место доступа	Используется при изучении разделов, номера страниц
1	Системный анализ и принятие решений	Р.Е. Саркисян; МИИТ. Каф. "Высшая	МИИТ, 2008	Все разделы
		математика"	НТБ (фб.); НТБ (чз.2)	
2	Задачи и упражнения по теории вероятностей	Е. С. Вентцель, Л.А. Овчаров	Издательский центр "Академия", 2005	Все разделы
			ИТБ УЛУПС (Абонемент ЮИ); ИТБ УЛУПС (Ч31	
			ЮИ)	

7.2. Дополнительная литература

№ п/п	Наименование	Автор (ы)	Год и место издания Место доступа	Используется при изучении разделов, номера страниц
3	Модели и методы оптимизации	Ред. В.Т. Дементьев; АН СССР. Сиб. отделение	Наука. Сиб. отд-ние, 1988 НТБ (фб.)	Все разделы
4	Многокритериальные модели и методы оптимизации в текущем планировании производства	М.Г. Рабинович; Мин-во высшего и среднего спец. образ-я РСФСР, Ленинградский инженерно-экономический институт	Изд-во Ленинград. ун-та, 1988 НТБ (фб.)	Все разделы

8. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ "ИНТЕРНЕТ", НЕОБХОДИМЫЕ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

- 1. http://library.miit.ru/ электронно-библиотечная система Научно-технической библиотеки МИИТ.
- 2. http://elibrary.ru/ научно-электронная библиотека.
- 3. Поисковые системы: Yandex, Google, Mail.

9. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Для проведения лекционных занятий необходима специализированная лекционная аудитория с мультимедиа аппаратурой и интерактивной доской.

Для проведения практических занятий необходимы компьютеры с рабочими местами в компьютерном классе. Компьютеры должны быть обеспечены стандартными лицензионными программными продуктами: Windows 7, Microsoft Office 2013, Microsoft Office 2007, Microsoft Essential Security 2012

При организации обучения по дисциплине (модулю) с применением электронного

обучения и дистанционных образовательных технологий необходим доступ каждого студента к информационным ресурсам – библиотечному фонду Университета, сетевым ресурсам и информационно-телекоммуникационной сети «Интернет».

В случае проведении занятий с применением электронного обучения и дистанционных образовательных технологий может понадобиться наличие следующего программного обеспечения (или их аналогов): ОС Windows, Microsoft Office, Интернет-браузер, Microsoft Teams и т.д.

В образовательном процессе, при проведении занятий с применением электронного обучения и дистанционных образовательных технологий, могут применяться следующие средства коммуникаций: ЭИОС РУТ(МИИТ), Microsoft Teams, электронная почта, скайп, Zoom, WhatsApp и т.п.

10. ОПИСАНИЕ МАТЕРИАЛЬНО ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Учебная аудитория для проведения занятий лекционного типа, занятий семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации (аудиовизуальное оборудование,компьютер в сборе Helios Profice VL310)

Учебная аудитория для проведения занятий лекционного типа, занятий семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации (многоцелевой проектор DLP NEC LT25,монитор Samsung 17 дюймов,компьютер. системный блок Intel(R) Pentium(R) CPU G860 @ 3.00GHz 4.00 ГБ (3,22 ГБ доступно) - 6,компьютер. системный блок AMD A6-5400K 3,6 Ггц LGA1150 - 8)

В случае проведении занятий с применением электронного обучения и дистанционных образовательных технологий необходимо наличие компьютерной техники, для организации коллективных и индивидуальных форм общения педагогических работников со студентами, посредством используемых средств коммуникации. Допускается замена оборудования его виртуальными аналогами.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

Обучающимся необходимо помнить, что качество полученного образования в немалой степени зависит от активной роли самого обучающегося в учебном процессе. Обучающийся должен быть нацелен на максимальное усвоение подаваемого лектором материала, после лекции и во время специально организуемых индивидуальных встреч он может задать лектору интересующие его вопросы.

Лекционные занятия составляют основу теоретического обучения и должны давать систематизированные основы знаний по дисциплине, раскрывать состояние и перспективы развития соответствующей области науки, концентрировать внимание обучающихся на наиболее сложных и узловых вопросах, стимулировать их активную познавательную деятельность и способствовать формированию творческого мышления. Главная задача лекционного курса — сформировать у обучающихся системное представление об изучаемом предмете, обеспечить усвоение будущими специалистами основополагающего учебного материала, принципов и закономерностей развития соответствующей научно-практической области, а также методов применения полученных знаний, умений и навыков.

Основные функции лекций: 1. Познавательно-обучающая; 2. Развивающая; 3. Ориентирующе-направляющая; 4. Активизирующая; 5. Воспитательная; 6. Организующая; 7. информационная.

Выполнение практических заданий служит важным связующим звеном между

теоретическим освоением данной дисциплины и применением ее положений на практике. Они способствуют развитию самостоятельности обучающихся, более активному освоению учебного материала, являются важной предпосылкой формирования профессиональных качеств будущих специалистов.

Проведение практических занятий не сводится только к органическому дополнению лекционных курсов и самостоятельной работы обучающихся. Их вместе с тем следует рассматривать как важное средство проверки усвоения обучающимися тех или иных положений, даваемых на лекции, а также рекомендуемой для изучения литературы; как форма текущего контроля за отношением обучающихся к учебе, за уровнем их знаний, а следовательно, и как один из важных каналов для своевременного подтягивания отстающих обучающихся.

При подготовке специалиста важны не только серьезная теоретическая подготовка, знание основ надежности подвижного состава, но и умение ориентироваться в разнообразных практических ситуациях, ежедневно возникающих в его деятельности. Этому способствует форма обучения в виде практических занятий. Задачи практических занятий: закрепление и углубление знаний, полученных на лекциях и приобретенных в процессе самостоятельной работы с учебной литературой, формирование у обучающихся умений и навыков работы с исходными данными, научной литературой и специальными документами. Практическому занятию должно предшествовать ознакомление с лекцией на соответствующую тему и литературой, указанной в плане этих занятий. Самостоятельная работа может быть успешной при определенных условиях, которые необходимо организовать. Ее правильная организация, включающая технологии отбора целей, содержания, конструирования заданий и организацию контроля, систематичность самостоятельных учебных занятий, целесообразное планирование рабочего времени позволяет привить студентам умения и навыки в овладении, изучении, усвоении и систематизации приобретаемых знаний в процессе обучения, привить навыки повышения профессионального уровня в течение всей трудовой деятельности.

Каждому студенту следует составлять еженедельный и семестровый планы работы, а также план на каждый рабочий день. С вечера всегда надо распределять работу на завтра. В конце каждого дня целесообразно подводить итог работы: тщательно проверить, все ли выполнено по намеченному плану, не было ли каких-либо отступлений, а если были, по какой причине это произошло. Нужно осуществлять самоконтроль, который является необходимым условием успешной учебы. Если что- то осталось невыполненным, необходимо изыскать время для завершения этой части работы, не уменьшая объема недельного плана.

Компетенции обучающегося, формируемые в результате освоения учебной дисциплины, рассмотрены через соответствующие знания, умения и владения. Для проверки уровня освоения дисциплины предлагаются вопросы к экзамену и тестовые материалы, где каждый вариант содержит задания, разработанные в рамках основных тем учебной дисциплины и включающие терминологические задания.

Фонд оценочных средств являются составной частью учебно-методического обеспечения процедуры оценки качества освоения образовательной программы и обеспечивает повышение качества образовательного процесса и входит, как приложение, в состав рабочей программы дисциплины.

Основные методические указания для обучающихся по дисциплине указаны в разделе основная и дополнительная литература.