МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы специалитета по специальности

23 05 01 Наземыне транопортно-технологические

23.05.01 Наземные транспортно-технологические средства,

утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Теория проектирования манипуляционных систем НТТС

Специальность: 23.05.01 Наземные транспортно-

технологические средства

Специализация: Подъемно-транспортные, строительные,

дорожные средства и оборудование

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 6216

Подписал: заведующий кафедрой Неклюдов Алексей

Николаевич

Дата: 01.06.2022

1. Общие сведения о дисциплине (модуле).

Целями освоения дисциплины (модуля) являются:

- формирование знаний и умений у будущих специалистов в области анализа и синтеза типовых механизмов и их систем.

Задачами дисциплины (модуля) являются:

- изучение общих методов исследования структуры, геометрии, кинематики, динамики типовых механизмов и их систем;
- получение математических моделей для задач проектирования механизмов и машин.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-5** Способен применять инструментарий формализации инженерных, научно-технических задач, использовать прикладное программное обеспечение при расчете, моделировании и проектировании технических объектов и технологических процессов;
- **ПК-1** Способен анализировать состояние и перспективы развития средств механизации и автоматизации подъёмно-транспортных, строительных и дорожных работ, их технологического оборудования и комплексов на их базе.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Владеть:

- навыками анализа и синтеза типовых механизмов и их систем НТТС;
- навыками чтения кинематических схем узлов и механизмов.

Знать:

- методы и основы анализа и синтеза типовых механизмов и систем HTTC;
 - правила выполнения кинематических схем узлов и механизмов.

Уметь:

- определять общие методы исследования структуры, геометрии, кинематики, динамики типовых механизмов и их систем.
 - 3. Объем дисциплины (модуля).

3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 3 з.е. (108 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

		Количество	
Тип учебных занятий	часов		
	Всего	Сем.	
		№5	
Контактная работа при проведении учебных занятий (всего):		84	
В том числе:			
Занятия лекционного типа	50	50	
Занятия семинарского типа	34	34	

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 24 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

№ п/п	Тематика лекционных занятий / краткое содержание
1	Введение. Основные понятия и определения ТММ.
	Рассматриваемые вопросы:
	- основные определения и понятия ТММ;

NC-	
№	Тематика лекционных занятий / краткое содержание
п/п	
	- структурная и кинематическая схема механизма;
	- условные обозначения кинематических пар и звеньев;
	- классификация механизмов;
	- степень подвижности механизмов;
	- структурные формулы плоских, клиновых, пространственных механизмов.
2	Структурный анализ механизмов.
	Рассматриваемые вопросы:
	- структурная классификация плоских механизмов по Ассуру-Артоболевскому;
	- группа, признаки группы;
	- виды групп плоских механизмов;
	- класс и порядок механизма, формула строения механизма.
3	Кинематическое исследование механизмов.
	Рассматриваемые вопросы:
	- основные задачи кинематического исследования рычажных механизмов;
	- определение положений звеньев;
	- построение траекторий точек;
	- определение скоростей и ускорений методом планов (шарнирный четырехзвенник);
	- свойства планов скоростей и ускорений;
	- графические методы кинематического исследования;
	- кинематические диаграммы перемещений, скоростей, ускорений;
	- графическое дифференцирование методом хорд;
4	- кинематическое исследование кулисного механизма методом планов.
4	Зубчатые передачи. Кинематика зубчатых передач.
	Рассматриваемые вопросы:
	- кинематика простой зубчатой передачи цилиндрическими колесами; - кинематика ступенчатой передачи с промежуточными колесами;
	- геометрия нулевого цилиндрического колеса;
	- параметры зубчатого колеса;
	- теория зацепления двух зубчатых колес;
	- основная теорема зацепления.
5	Эвольвентная зубчатая передача.
	Рассматриваемые вопросы:
	- процесс зацепления;
	- эвольвента и ее свойства;
	- точка зацепления;
	- линия зацепления;
	- практическая и теоретическая линия зацепления;
	- рабочие профили зубьев;
	- сопряженные точки;
	- дуга зацепления, коэффициент перекрытия;
	- подрез зубьев;
	- способы ликвидации подреза зубьев;
	- методы нарезания зубьев колес с эвольвентными профилями.
6	Трение.
	Рассматриваемые вопросы:
	- сила трения;
	- виды трения;
	- полезное и вредное трение;
	- сухое трение скольжения;
	- основные законы сухого трения скольжения;
	- трение скольжения в поступательной паре с горизонтальной направляющей, на наклонных

No	Тематика лекционных занятий / краткое содержание	
п/п		
	направляющих (плоский и клиновой ползун);	
	- трение в резьбе;	
	- трение качения.	
7	Динамика. Силовой расчет механизмов.	
	Рассматриваемые вопросы:	
	- динамика механизмов и машин;	
	- силовой расчет механизмов;	
	- основная задача силового расчета;	
	- условие статической определимости кинематической цепи;	
	- определение сил инерции и весов звеньев;	
	- силовой расчет шарнирного четырехзвенника;	
	- силовой расчет группы;	
	- определение давлений в парах;	
	- силовой расчет начального звена;	
	- определение уравновешивающего усилия;	
	- теорема Жуковского о жестком рычаге;	
	- проверка результатов силового расчета шарнирного четырехзвенника с помощью рычага	
	Жуковского.	
8	Метод приведенных величин.	
	Рассматриваемые вопросы:	
	- движение механизма под действием заданных сил;	
	- метод приведенных величин;	
	- приведенный момент сил, приведенный момент инерции механизма	

4.2. Занятия семинарского типа.

Практические занятия

№	Тематика практических занятий/краткое содержание		
п/п	1 1		
1	Степень подвижности механизмов.		
	В ходе выполнения практического задания изучаеются степени подвижности механизмов.		
2	Структурный анализ плоских рычажных механизмов.		
	В результате выполнения практического задания изучаются плоские рычажные механизмы.		
3	Кинематическое исследование кривошипно-ползунного механизма методом планов.		
	В результате выполнения практического задания изучается метод планов для КШМ.		
4	Кинематическое исследование кривошипно-ползунного механизма методом		
	графиков.		
	В результате выполнения практического задания изучается метод графиков для КШМ.		
5	Кинематическое исследование планетарных передач аналитическим и графическим		
	методом.		
	В ходе выполнения практического задания изучаются кинематические особенности планетарных		
	передач.		
6	Геометрия зубчатого зацепления.		
	В ходе выполнения практического задания изучается зубчатое зацепление и его геометрия.		
7	Трение.		
	В ходе выполнения практического задания изучаются различные виды сил трения и их действие на		
	механизмы.		

4.3. Самостоятельная работа обучающихся.

№	Вид самостоятельной работы	
п/п	Бид самостоятельной расоты	
1	Эвольвентная зубчатая передача (закрепление материала).	
2	Метод приведенных величин (закрепление материала).	
3	Энергетический баланс машины (подготовка к практическому занятию).	
4	График энергомасс (подготовка к практическому занятию).	
5	Кулачковые механизмы (закрепление материала).	
6	Выполнение курсового проекта.	
7	Подготовка к промежуточной аттестации.	
8	Подготовка к текущему контролю.	

4.4. Примерный перечень тем курсовых проектов

Курсовой проект предусматривает решение ряда задач: динамика машинного агрегата, динамический анализ основного исполнительного механизма машины, синтез кулачкового механизма.

Тематика проектов (по вариантам):

- 1. Силовой расчёт механизма холодновысадочного аппарата;
- 2. Проектирование привода к конвейеру для сортировки;
- 3. Проектирование и исследование механизма привода качающегося конвейера;
 - 4. Проектирование и исследование механизма компрессора.

Применяемая в данном случае методика курсового проектирования предполагает предварительное выполнение ряда работ, связанных с анализом исходных данных, исследованием строения механизмов и машины, структурным и геометрическим синтезом механизма, подготовкой алгоритмов и контрольными расчетами.

Курсовой проект состоит из пояснительной записки, выполняемой на листах формата А4, и графической части на трех листах формата А1.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Чмиль, В. П. Теория механизмов и	URL: https://e.lanbook.com/book/167378 (дата
	машин: учебно-методическое пособие	обращения: 11.03.2022). — Режим доступа: для
	/ В. П. Чмиль. — 3-е изд., стер. —	авториз. пользователей.
	Санкт-Петербург : Лань, 2021. — 280	

	c. — ISBN 978-5-8114-1222-8.	
2	Тимофеев, Г. А. Теория механизмов и машин: учебник и практикум для вузов / Г. А. Тимофеев. — 4-е изд., перераб. и доп. — Москва: Издательство Юрайт, 2022. — 432 с. — (Высшее образование). — ISBN 978-5-534-12245-9.	URL: https://urait.ru/bcode/488589 (дата обращения: 11.03.2022).
3	Леонов, И. В. Теория механизмов и машин. Основы проектирования по динамическим критериям и показателям экономичности: учебник для вузов / И. В. Леонов, Д. И. Леонов. — Москва: Издательство Юрайт, 2022. — 239 с.	URL: https://urait.ru/bcode/488587 (дата обращения: 11.03.2022).
4	Поезжаева, Е. В. Теория механизмов и механика систем машин: учебное пособие / Е. В. Поезжаева. — Пермь: ПНИПУ, 2015. — 400 с. — ISBN 978-5-398-01369-6.	URL: https://e.lanbook.com/book/160590 (дата обращения: 11.03.2022). — Режим доступа: для авториз. пользователей.
5	Борисенко, Л. А. Теория механизмов, машин и манипуляторов : учебное пособие / Л. А. Борисенко. — Минск : Новое знание, 2011. — 285 с. — ISBN 978-985-475-430-7.	URL: https://e.lanbook.com/book/2919 (дата обращения: 06.03.2022). — Режим доступа: для авториз. пользователей.
6	Проектирование технологических машин: учебное пособие / Б. Ф. Зюзин, А. И. Жигульская, С. Д. Семеенков, В. М. Шпынев. — 2-е изд., перераб. и доп. — Тверь: ТвГТУ, 2020. — 112 с. — ISBN 978-5-7995-1112-8.	URL: https://e.lanbook.com/book/171309 (дата обращения: 06.03.2022). — Режим доступа: для авториз. пользователей.
7	Лагерев, И. А. Оптимальное проектирование подъемнотранспортных машин / И. А. Лагерев, А. В. Лагерев. – Брянск : Брянский государственный технический университет, 2013. – 228 с. – ISBN 978-5-89838-680-1.	URL: https://elibrary.ru/item.asp?id=21814408
8	Лагерев, И. А. Современная теория манипуляционных систем мобильных многоцелевых транспортнотехнологических машин и комплексов: Конструкции и условия эксплуатации / И. А. Лагерев, А. В. Лагерев. – Брянск	URL: https://elibrary.ru/item.asp?id=36373110

университе	государственный т имени академика И.Г. го, 2018. – 189 с. – ISBN -0295-2.	
подъемно-т В. Лагерев. государство	В. Нагруженность гранспортной техники / А. – Брянск : Брянский енный технический т, 2010. – 180 с. – ISBN 978-7-5.	URL: https://zenodo.org/record/1306614#.Y2fpR0zP1PY

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (https://www.miit.ru/)

Научно-техническая библиотека РУТ (МИИТ) (http:/library.miit.ru)

Образовательная платформа «Юрайт» (https://urait.ru/)

Общие информационные, справочные и поисковые «Консультант Плюс» (http://www.consultant.ru/),

«Гарант» (http://www.garant.ru/),

«Техэксперт» — справочная система, предоставляющая нормативнотехническую, нормативно-правовую информацию (https://docs.cntd.ru/)

Главная книга (https://glavkniga.ru/)

Электронно-библиотечная система издательства (http://e.lanbook.com/)

Электронно-библиотечная система ibooks.ru (http://ibooks.ru/)

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Microsoft Office (Word, Excel); ACKOH ΚΟΜΠΑС 3D.

- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).
- 1. Рабочее место преподавателя с персональным компьютером, подключенным к сетям INTERNET. Программное обеспечение для создания текстовых и графических документов, презентаций.
- 2. Специализированная лекционная аудитория с мультимедиа аппаратурой и интерактивной доской.
 - 3. Для проведения тестирования: компьютерный класс.

9. Форма промежуточной аттестации:

Зачет в 5 семестре.

Курсовой проект в 5 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы

Заведующий кафедрой, доцент, к.н. кафедры «Наземные транспортнотехнологические средства»

Неклюдов Алексей

Николаевич

Лист согласования

Заведующий кафедрой НТТС А.Н. Неклюдов

Председатель учебно-методической

комиссии С.В. Володин