МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 15.03.06 Мехатроника и робототехника, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Теория прочности элементов конструкций

Направление подготовки: 15.03.06 Мехатроника и робототехника

Направленность (профиль): Электрооборудование и электропривод

подвижного состава

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 610876

Подписал: заведующий кафедрой Григорьев Павел

Александрович

Дата: 04.07.2025

1. Общие сведения о дисциплине (модуле).

Целями освоения дисциплины (модуля) являются:

- формирование у студентов фундаментальных знаний о методах расчета и оценки прочности элементов конструкций при различных видах нагружения;
- развитие навыков применения современных методов расчета прочности, включая компьютерное моделирование в САПР-системах;
- подготовка специалистов, способных анализировать и решать практические задачи оценки прочности и надежности конструкций.

Задачами дисциплины (модуля) являются:

- изучение основных понятий и критериев прочности элементов конструкций;
- освоение методов расчета напряженно-деформированного состояния при различных видах нагружения;
- формирование умений проводить расчеты на устойчивость и динамическую прочность;
- развитие навыков компьютерного моделирования напряженного состояния в САПР-системах.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ПК-1** Способен осуществлять проведение работ по обработке и анализу научно-технической информации и результатов исследований в области проектирования ПСЖД;
- **ПК-4** Способен осуществлять предпроектное обследование и подготовку технико-экономического обоснования создания электрооборудования и электропривода ПСЖД.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- основные теории прочности и методы их применения;
- критерии работоспособности при статических и динамических нагрузках;
 - методы расчета напряжений в типовых элементах конструкций;
 - принципы работы с нормативной документацией.

Уметь:

- проводить расчеты на прочность при различных видах нагружения;
- оценивать концентрацию напряжений в конструктивных элементах;
- анализировать усталостную долговечность деталей;
- интерпретировать результаты компьютерного моделирования.

Владеть:

- методами аналитического расчета напряженного состояния;
- навыками работы в САПР-системах для анализа прочности;
- технологиями оптимизации конструкций по критериям прочности;
- методами анализа причин разрушения конструкций.
- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 3 з.е. (108 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
	Всего	Семестр №4
Контактная работа при проведении учебных занятий (всего):	64	64
В том числе:		
Занятия лекционного типа	32	32
Занятия семинарского типа	32	32

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 44 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.

4. Содержание дисциплины (модуля).

4.1. Занятия лекционного типа.

No॒	T	
п/п	Тематика лекционных занятий / краткое содержание	
1	Введение в теорию прочности	
	Рассматриваемые вопросы:	
	- основные понятия и определения прочности;	
	- классификация видов нагружения конструкций;	
	- критерии работоспособности элементов конструкций;	
	- нормативная база и стандарты в расчетах на прочность.	
2	Напряженно-деформированное состояние	
Рассматриваемые вопросы: - понятие о напряженном состоянии в точке;		
	- анализ плоского напряженного состояния;	
	- инварианты тензора напряжений.	
3	Теории прочности	
	Рассматриваемые вопросы:	
	- классификация теорий прочности;	
- теория наибольших нормальных напряжений;		
- теория наибольших касательных напряжений;		
	- энергетическая теория прочности.	
4	4 Прочность при статическом нагружении	
Рассматриваемые вопросы:		
- расчеты на прочность при растяжении-сжатии;- расчеты на прочность при кручении;		
- сложное сопротивление (косой изгиб, внецентренное растяжение).		
5	Прочность при циклическом нагружении	
	Рассматриваемые вопросы:	
- понятие усталостной прочности;		
- кривые усталости (кривые Веллера);		
- факторы, влияющие на усталостную прочность;		
	- методы повышения усталостной долговечности.	
6	Прочность при динамических нагрузках	
	Рассматриваемые вопросы:	
- расчеты на ударную прочность;		
	- динамические коэффициенты;	
	- прочность при вибрационных нагрузках;	
- методы демпфирования колебаний.		
7 Температурные напряжения		
	Рассматриваемые вопросы:	
- понятие термических напряжений;		
	- расчеты на прочность при тепловом ударе;	
- влияние температуры на механические свойства материалов;		
	- методы компенсации температурных напряжений.	

No	T	
п/п	Тематика лекционных занятий / краткое содержание	
8	Остаточные напряжения Рассматриваемые вопросы:	
	- причины возникновения остаточных напряжений;	
	- методы измерения остаточных напряжений;	
	- влияние остаточных напряжений на прочность;	
	- методы снятия остаточных напряжений.	
9	Контактная прочность	
	Рассматриваемые вопросы:	
	- теория Герца о контактных напряжениях;	
	- расчеты на контактную прочность зубчатых передач;	
	- усталость при контактном нагружении;	
	- методы повышения контактной прочности.	
10	Современные методы оценки прочности	
	Рассматриваемые вопросы:	
	- компьютерное моделирование напряженного состояния;	
	- метод конечных элементов в расчетах на прочность;	
	- экспериментальные методы исследования прочности.	

4.2. Занятия семинарского типа.

Практические занятия

	TIPURTI TOURIE SUITATA		
№ п/п	Тематика практических занятий/краткое содержание		
1	Моделирование напряженного состояния при растяжении		
	В результате выполнения задания студенты освоят создание 3D-моделей стержневых элементов,		
	научатся задавать нагрузки и граничные условия, а также анализировать распределение напряжений		
	в САПР-системе.		
2	Анализ кручения валов		
	В результате выполнения задания студенты проведут конечно-элементный анализ валов различного		
	сечения, изучат распределение касательных напряжений и определят опасные сечения.		
3	Расчет балок на изгиб		
	В результате выполнения задания студенты построят расчетные модели балок, проанализируют		
	эпюры напряжений и деформаций, сравнят численные решения с аналитическими расчетами.		
4	Анализ сложного сопротивления		
	В результате выполнения задания студенты исследуют комбинированное действие различных видов		
	нагружения, научатся определять эквивалентные напряжения по различным теориям прочности.		
5	Исследование концентрации напряжений		
	В результате выполнения задания студенты проанализируют влияние конструктивных		
	особенностей (отверстий, выточек) на распределение напряжений, определят коэффициенты		
	концентрации.		
6	Усталостный анализ деталей		
	В результате выполнения задания студенты освоят методику оценки усталостной долговечности,		
	построят диаграммы усталости и определят коэффициенты запаса.		
7	Контактный анализ сопрягаемых деталей		
	В результате выполнения задания студенты исследуют распределение контактных напряжений,		
	проанализируют влияние геометрии контактирующих поверхностей.		

№	Томотика проктиноских рондтий/краткое со поручание	
п/п	Тематика практических занятий/краткое содержание	
8	Термомеханический анализ	
	В результате выполнения задания студенты изучат влияние температурных нагрузок на	
	напряженное состояние деталей, проанализируют термические деформации.	
9	Динамический анализ конструкций	
	В результате выполнения задания студенты изучат поведение конструкций при динамических	
	нагрузках, определят резонансные частоты.	
10	Анализ остаточных напряжений	
	В результате выполнения задания студенты исследуют влияние технологических процессов на	
	возникновение остаточных напряжений.	
11	Параметрическая оптимизация	
	В результате выполнения задания студенты освоят методы топологической оптимизации для	
	снижения массы при сохранении прочности.	
12	Сравнительный анализ решателей	
	В результате выполнения задания студенты сравнят результаты расчетов в различных САПР-	
	системах, оценят погрешности.	

4.3. Самостоятельная работа обучающихся.

	№ π/π	Вид самостоятельной работы
	1	Текущая подготовка к практическими занятиям
	2	Самостоятельное изучение дополнительной литературы
Ī	3	Подготовка к промежуточной аттестации.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

<u>№</u>	Библиографическое описание	Место доступа
п/п 1	Конструкционная прочность материалов. Ресурс конструкций высоких параметров / В. С. Бондарь, Ю. М. Темис, Ю. Г. Матвиенко [и др.]; под редакцией В. С. Бондарь. — Санкт-Петербург:	URL: https://e.lanbook.com/book/362729 (дата обращения: 04.07.2025) Текст: электронный.
2	Лань, 2024. — 256 с. — ISBN 978-5-507-48121-7. Шилер, В. В. Прочность конструкции механической части электроподвижного состава: учебно-методическое пособие / В. В. Шилер, А. С. Вильгельм. — Омск: ОмГУПС, 2022. — 33 с.	URL: https://e.lanbook.com/book/419639 (дата обращения: 04.07.2025) Текст: электронный.
3	Николаева, Е. А. Прочность и разрушение материалов : учебное пособие / Е. А. Николаева. — Пермь : ПНИПУ, 2010. — 113 с. — ISBN 978-5-398-00385-7.	URL: https://e.lanbook.com/book/160545 (дата обращения: 04.07.2025) Текст: электронный.
4	Молотников, В. Я. Сопротивление материалов : учебное пособие для вузов / В. Я. Молотников. —	URL: https://e.lanbook.com/book/385916

Санкт-Петербург : Лань, 2024. — 312 с. — ISBN	(дата обращения: 04.07.2025)
978-5-507-48506-2.	Текст: электронный.

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (https://www.miit.ru/).

Научно-техническая библиотека РУТ (МИИТ) (http:/library.miit.ru).

Образовательная платформа «Юрайт» (https://urait.ru/).

Общие информационные, справочные и поисковые системы «Консультант Плюс», «Гарант».

Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/).

Электронно-библиотечная система ibooks.ru (http://ibooks.ru/).

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Microsoft Office (Word, Excel); ΚΟΜΠΑC-3D; APM FEM.

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебные аудитории для проведения учебных занятий, оснащенные компьютерной техникой и наборами демонстрационного оборудования.

9. Форма промежуточной аттестации:

Зачет в 4 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, к.н. кафедры «Наземные транспортно-технологические средства»

П.А. Григорьев

заведующий кафедрой, доцент, к.н. кафедры «Наземные транспортнотехнологические средства»

А.Н. Неклюдов

Согласовано:

Заведующий кафедрой НТТС

П.А. Григорьев

Председатель учебно-методической

комиссии С.В. Володин