МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 23.03.02 Наземные транспортно-технологические комплексы,

утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Теория решения изобретательских задач

Направление подготовки: 23.03.02 Наземные транспортно-

технологические комплексы

Направленность (профиль): Транспортный и промышленный дизайн

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 170737

Подписал: заместитель директора академии Паринов Денис

Владимирович

Дата: 02.09.2021

1. Общие сведения о дисциплине (модуле).

Теория решения изобретательских задач, или ТРИЗ, — набор методов решения технических задач и усовершенствования технических систем. Дисциплина "Теория решения изобретательских задач" объединяет методы в единую систему и адаптирует к реалиям дизайн-проектирования промышленных изделий.

К основным целям освоения дисциплины следует отнести:

- формирование знаний о современных практиках разработки промышленного изделия.
- подготовка студентов к проектной работе по направлению, в том числе формирование умений, связных с анализом технических решений, потребительских свойств и технологических особенностей продукта, разработкой дизайн-стратегии и последующих этапов связанных с производством и реализацией продукта.

К основным задачам освоения дисциплины следует отнести:

- Обучение методу системного дизайн-проектирования продукта.
- Грамотное и последовательное ведение дизайнерской проектной работы;
 - Развитие креативного (проектно-новаторского) мышления.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **УК-1** Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач;
- **УК-5** Способен воспринимать межкультурное разнообразие общества в социально-историческом, этическом и философском контекстах.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

особенности проектирования промышленных объектов и наземных транспортных средств

мировой опыт и результаты применения ТРИЗ

Уметь:

проектировать промышленные объекты и наземные транспортные средства

создавать промышленные изделия с учетом ТРИЗ

Владеть:

методами проектирования промышленных объектов и наземных транспортных средств

методами создания промышленного продукта с учетом ТРИЗ

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 2 з.е. (72 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
	Всего	Семестр №4
Контактная работа при проведении учебных занятий (всего):	54	54
В том числе:		
Занятия лекционного типа	18	18
Занятия семинарского типа	36	36

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 18 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

$N_{\underline{0}}$	Тематика лекционных занятий / краткое содержание		
п/п			
1	Методы идентификации проблемы		
	Изучение тактик и стратегий для точного определения и артикуляции проблемы, с которой		
	сталкивается техническая система. Это важный шаг в процессе ТРИЗ, поскольку правильное		
	определение проблемы является ключевым для ее решения.		
2	Интенсивное мышление и использование ресурсов		
	Изучение того, как использовать доступные ресурсы наиболее эффективно при решении		
	технических проблем. ТРИЗ подчеркивает важность интенсивного мышления и креативности при		
	использовании ограниченных ресурсов.		
3	Анализ противоречий		
	Обучение методам определения и разрешения противоречий в технической системе. Путем		
	разрешения этих противоречий можно добиться значительного технического прогресса.		
4	Использование матрицы противоречий		
	Практическое применение матрицы противоречий, инструмента ТРИЗ, который помогает		
	определить наиболее подходящие принципы для разрешения конкретного противоречия.		
5	Функционально-стоимостной анализ		
	Изучение принципов функционально-стоимостного анализа и его применения в ТРИЗ. Этот метод		
	анализирует функции продукта и их стоимость, чтобы идентифицировать возможности для		
	улучшения.		
6	Прогнозирование развития технических систем		
	Обучение методам прогнозирования будущего развития технических систем на основе анализа		
	прошлых тенденций и текущего состояния.		
7	Применение принципов ТРИЗ в инновациях		
	Изучение того, как принципы ТРИЗ могут быть применены к процессу инноваций, включая		
	генерацию идей, разработку продуктов и улучшение процессов.		
8	Системный подход в ТРИЗ		
	Изучение важности системного подхода в ТРИЗ и того, как он применяется для анализа и		
	улучшения технических систем.		
9	Практическое применение ТРИЗ		
	Разработка и реализация конкретных примеров применения ТРИЗ для решения реальных		
	технических проблем. Это может включать в себя решение задач, основанных на реальных		
	сценариях, и анализ результатов.		

4.2. Занятия семинарского типа.

Практические занятия

№ π/π	Тематика практических занятий/краткое содержание	
	Drawy a TDM2	
I	Введение в ТРИЗ	
	Изучение основ и ключевых принципов ТРИЗ и методологии.	
2	Технические противоречия	
	Применение методов ТРИЗ для решения технических противоречий	
3	Применение алгоритма изобретательского решения проблем (АИРП)	
	Что тапкое АИРП, АРИЗ	
4	Использование Таблицы противоречий в ТРИЗ	
	Взучение и использование таблицы противоречий в контексте ТРИЗ.	
5	Разработка концепций новых продуктов с использованием ТРИЗ	
	Использование ТРИЗ для разработки и улучшения идей для новых продуктов.	

No			
п/п	Тематика практических занятий/краткое содержание		
6	Анализ потенциальных проблем в проектах с помощью ТРИЗ		
	Применение ТРИЗ для идентификации и прогнозирования возможных проблем в проектах		
7	Улучшение процессов и операций с помощью ТРИЗ		
	Применение ТРИЗ для оптимизации процессов и операций		
8	Оптимизация систем с помощью ТРИЗ		
	Использование ТРИЗ для анализа и оптимизации систем.		
9	Идентификация ресурсов в ТРИЗ		
	Использование ТРИЗ для идентификации и оптимизации использования ресурсов.		
10	Генерация идей и инноваций с помощью ТРИЗ		
	Использование ТРИЗ для генерации новых идей и стимулирования инноваций.		
11	Применение технологии идеального конечного результата (ИКР) в ТРИЗ		
	Применение концепции ИКР в контексте ТРИЗ.		
12	ТРИЗ и прогнозирование технологического развития		
	Использование ТРИЗ для прогнозирования технологического развития.		
13	Управление проектами с использованием ТРИЗ		
	Применение принципов ТРИЗ в управлении проектами.		
14	ТРИЗ в контексте экологического дизайна и устойчивого развития		
	Использование ТРИЗ для поддержки устойчивого развития и экологического дизайна.		
15	Применение матрицы противоречий в ТРИЗ		
	Практическое использование матрицы противоречий в контексте ТРИЗ.		
16	Решение сложных междисциплинарных проблем с помощью ТРИЗ		
	Использование ТРИЗ для решения сложных и междисциплинарных проблем.		
17	ТРИЗ и промышленный дизайн		
	Применение принципов ТРИЗ в контексте разработки промышленного дизайна.		

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы		
1	Подготовка к практическим занятиям;Работа с литературой, самостоятельное		
	изучение; Подготовка к промежуточной аттестации (экзамену).		
2	Подготовка к промежуточной аттестации.		
3	Подготовка к текущему контролю.		

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Мингазетдинов, И. Х. Теория решения изобретательских задач: учебно-методическое пособие / И. Х. Мингазетдинов, С. В. Смирнова. — Казань: КНИТУ-КАИ, 2020. — 100 с. — ISBN	https://e.lanbook.com/book/264887 (дата обращения: 16.05.2024). — Текст: электронный.
	978-5-7579-2438-0.	

2	Байбурин, А. Х. Методы инноваций в	https://e.lanbook.com/book/129226
	строительстве: учебное пособие / А. Х. Байбурин,	(дата обращения: 16.05.2024). —
	Н. В. Кочарин. — 2-е изд., стер. — Санкт-	Текст: электронный.
	Петербург : Лань, 2020. — 164 с. — ISBN 978-5-	
	8114-4963-7.	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (https://www.miit.ru/).

Ссылки на элекронные библиотеки: Информационный портал Научная электронная библиотека eLIBRARY.RU (www.elibrary.ru);

Единая коллекция цифровых образовательных ресурсов (http://window, edu.ru);

Научно-техническая библиотека РУТ (МИИТ) (http://library.mitt.ru);

Поисковые системы «Яндекс», «Google» для доступа к тематическим информационным ресурсам; Электронно-библиотечная система издательства «Лань» – http://e.lanbook.com /;

Электронно-библиотечная система ibooks.ru – http://ibooks.ru /;

Электронно-библиотечная система «УМЦ» – http://www.umczdt.ru/;

Электронно-библиотечная система «Intermedia» – http:// www .intermediapublishing.ru/;

Электронно-библиотечная система «BOOK.ru» – http://www.book.ru/;

Электронно-библиотечная система «ZNANIUM.COM» – http://www.znanium.com/

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Программное обеспечение для выполнения практических заданий включает в себя программные продукты общего применения: операционная система Windows, Microsoft Office 2003 и выше, Браузер Yandex, Adobe Acrobat, Adobe Photoshop, Coreldraw

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебные аудитории для проведения учебных занятий, оснащенные компьютерной техникой и наборами демонстрационного оборудования.

9. Форма промежуточной аттестации:

Зачет в 4 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент Академии "Высшая инженерная школа"

Н.А. Любавин

Согласовано:

Заместитель директора академии

Д.В. Паринов

Председатель учебно-методической

комиссии Д.В. Паринов