МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы специалитета по специальности 08.05.01 Строительство уникальных зданий и сооружений, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Теория упругости

Специальность: 08.05.01 Строительство уникальных зданий и

сооружений

Специализация: Строительство подземных сооружений

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи:

Подписал:

Дата: 06.06.2023

1. Общие сведения о дисциплине (модуле).

Целями освоения дисциплины (модуля) являются:

- изучение студентами математическое описание задач оптимизации несущих конструкций;
- изучение студентами особенности анализа и корректировки напряженно-деформированного состояния.

Задачами дисциплины (модуля) являются:

- овладение наиболее эффективными численными методами оптимизации;
- формирование навыков вычисления градиентов расчетных напряжений и перемещений.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-1** Способен решать прикладные задачи строительной отрасли, используя теорию и методы фундаментальных наук;
- **ОПК-11** Способен осуществлять постановку и решение научнотехнических задач строительной отрасли, выполнять экспериментальные исследования и математическое моделирование, анализировать их результаты, осуществлять организацию выполнения научных исследований.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- постановку и математическое описание задач оптимизации несущих конструкций;
 - наиболее эффективные численные методы оптимизации;
- особенности анализа и корректировки напряженно-деформированного состояния;
 - влияние типа сечения и других факторов на оптимизационный ресурс.

Уметь:

- моделировать несущие конструкции с помощью переменных проектирования, переменных состояния и других параметров;
- выполнить расчет, а также автоматизированный анализ и классификацию ограничений, отражающих требования к проектируемой конструкции;

- анализировать чувствительность переменных состояния (расчетных напряжений и перемещений) к небольшим изменениям переменных проектирования.

Владеть:

- способностью вычислять оптимизирующие приращения независимых и зависимых переменных проектирования;
- способностью определять адекватным способом такие корректирующие приращения переменных проектирования, которые обеспечивают удовлетворение основных требований проектирования;
- способностью использовать компьютерные программы для оптимизации проектных решений.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 3 з.е. (108 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

		Количество	
Тип учебных занятий	часов		
	Всего	Сем.	
		№7	
Контактная работа при проведении учебных занятий (всего):	64	64	
В том числе:			
Занятия лекционного типа	32	32	
Занятия семинарского типа	32	32	

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 44 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован

полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.

4. Содержание дисциплины (модуля).

4.1. Занятия лекционного типа.

$N_{\underline{0}}$	T		
п/п	Тематика лекционных занятий / краткое содержание		
1	Постановка задач оптимизации несущих конструкций		
	Вариантно-оптимальное проектирование (переменные проектирования и состояния, параметры конструкции, зависимые переменные проектирования, целевая функция).		
2	Исходные данные для расчета и оптимизации		
	Координаты, топология, прикрепления, нагрузки, типы материалов, сечений и площадей, ограничения унификации.		
3	Анализ напряженного состояния		
	Вычисление и анализ расчетных напряжений для каждого элемента конструкции при каждом		
	загружении.		
4	Линеаризация уравнений состояния и вычисление градиентов расчетных		
	перемещений.		
5	Точный и приближенный способы вычисления градиентов расчетных напряжений.		
6	Теория и практическая реализация оптимизации конструкций		
	Анализ и классификация ограничений (активные, пассивные и нарушенные ограничения,		
	классификация по невязкам и коэффициентам активности)		
7 Определение оптимизирующих приращений переменных проектировани			
	пассивных ограничений, определение длины шага спуска).		
8	Определение корректирующих приращений переменных проектирования (матрица		
	нарушенных ограничений, стандартная, лучевая и специальная корректировки).		
9	Определение оптимизирующего направления изменения переменных		
	проектирования (матрица активных ограничений, особенности вычисления		
	множителей Лагранжа, определение направления спуска).		

4.2. Занятия семинарского типа.

Практические занятия

№ п/п	Тематика практических занятий/краткое содержание
1	Вариантно-оптимальное проектирование (переменные проектирования и
	состояния, параметры конструкции, зависимые переменные проектирования,
	целевая функция).

$N_{\underline{0}}$	Т		
п/п	Тематика практических занятий/краткое содержание		
2	Исходные данные для расчета и оптимизации (координаты, топология,		
	прикрепления, нагрузки, типы материалов, сечений и площадей, ограничения		
	унификации).		
3	Анализ напряженного состояния (вычисление и анализ расчетных напряжений дл		
	каждого элемента конструкции при каждом загружении).		
4	Линеаризация уравнений состояния и вычисление градиентов расчетных		
	перемещений.		
5	Точный и приближенный способы вычисления градиентов расчетных напряжений.		
6	Анализ и классификация ограничений (активные, пассивные и нарушенные		
	ограничения, классификация по невязкам и коэффициентам активности)		
7	Определение корректирующих приращений переменных проектирования (матрица		
	нарушенных ограничений, стандартная, лучевая и специальная корректировки).		
8	Определение оптимизирующих приращений переменных проектирования (матрица		
	пассивных ограничений, определение длины шага спуска).		
9	Определение оптимизирующего направления изменения переменных		
	проектирования (матрица активных ограничений, особенности вычисления		
	множителей Лагранжа, определение направления спуска).		

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Изучение дополнительной литературы.
2	Подготовка к практическим занятиям.
3	Подготовка к промежуточной аттестации.
4	Подготовка к текущему контролю.

4.4. Примерный перечень тем курсовых проектов

- 1. Исследование спектра частот и форм собственных колебаний статически неопределимых балок
- 2. Исследование спектра частот и форм собственных колебаний статически неопределимых рам
- 3. Исследование спектра частот и форм собственных колебаний статически неопределимых ферм
- 4. Исследование спектра частот и форм собственных колебаний статически неопределимых комбинированных систем
- 5. Исследование спектра частот и форм собственных колебаний статически неопределимых балок, лежащих на упругих опорах
- 6. Определение перемещений и внутренних усилий при динамическом действии нагрузок

- 7. Исследование прочности материала опасного поперечного сечения
- 8. Расчет статически неопределимых рамных систем на устойчивость. Анализ предельного состояния
- 5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Методы оптимизации Н.Н. Моисеев, Ю.П. Иванилов,	НТБ (фб.)
	Е.М. Столярова Однотомное издание Наука. Гл. ред. физ	
	мат. лит. , 1978	
2	Весовая оптимизация плоских стержневых систем Ю.Ф.	НТБ (ЭЭ); НТБ (уч.1)
	Тарарушкин; МИИТ. Каф. "САПР транспортных	
	конструкций и сооружений" Однотомное издание МИИТ,	
	2006	
3	Оптимизация в САПР Ю.Ф. Тарарушкин; МИИТ. Каф.	НТБ (уч.1); НТБ (фб.);
	"САПР транспортных конструкций и сооружений"	НТБ (чз.1); НТБ (чз.4)
	Однотомное издание МИИТ, 1994	
4	Прикладное оптимальное проектирование: Механические	НТБ (фб.)
	системы и конструкции Э. Хог, Я. Арора; Под ред. Н.В.	
	Баничука Однотомное издание Мир, 1983	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (https://www.miit.ru/).

Научно-техническая библиотека РУТ (МИИТ) (http:/library.miit.ru).

Образовательная платформа «Юрайт» (https://urait.ru/).

Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/).

Электронно-библиотечная система ibooks.ru (http://ibooks.ru/).

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Microsoft Internet Explorer (или другой браузер).

Операционная система Microsoft Windows.

Microsoft Office.

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебные аудитории для проведения учебных занятий, оснащенные компьютерной техникой и наборами демонстрационного оборудования.

9. Форма промежуточной аттестации:

Зачет в 7 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, доцент, к.н. кафедры «Строительная механика»

И.В. Алферов

Согласовано:

Проректор Т.О. Марканич

Председатель учебно-методической

комиссии М.Ф. Гуськова