МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы специалитета по специальности 23.05.03 Подвижной состав железных дорог, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Теория электрической тяги

Специальность: 23.05.03 Подвижной состав железных дорог

Специализация: Электрический транспорт железных дорог

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5214

Подписал: заведующий кафедрой Пудовиков Олег

Евгеньевич

Дата: 16.09.2025

1. Общие сведения о дисциплине (модуле).

Целями освоения учебной дисциплины «Теория электрической тяги» являются:

- изучение общей теории движения поезда;
- освоить реализацию сил тяги и торможения, а также сопротивления движению поезда;
- изучение характеристик тягового и тормозного режимов ЭПС, а также стабильности характеристик ЭПС при реализации сил тяги и торможения;
 - изучение надежности реализации расчетных сил тяги и торможения;
 - освоить методы определения расхода энергии на движение поезда;
 - изучить расчет нагревания электрооборудования при работе ЭПС;
- освоить оценки использования мощности ЭПС и видов испытаний ЭПС.

Задачами освоения учебной дисциплины «Теория электрической тяги» являются:

- освоение расчётных и современных методов проведения тяговых расчетов и статистических расчетов;
 - освоение характеристик ЭПС при реализации сил тяги и торможения.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ПК-5 - Способен осуществлять расшифровку параметров движения локомотивов и моторвагонного подвижного состава, зафиксированных на бумажных или электронных носителях информации.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Уметь:

выполнять тяговые расчеты

Владеть:

методами реализации сил тяги и торможения, методами нормирования расхода энергоресурсов на тягу поездов; технологиями тяговых расчетов, методами расчета потребного количества тормозов, расчетной силы нажатия, длины тормозного пути

Знать:

основные характеристики электроподвижного состава, принципы и

способы реализации сил тяги (торможения), способы решения уравнения движения поезда и построения кривых движения поезда, методы расчета расхода энергоресурсов на тягу поезда, показатели использования наземного транспорта

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 4 з.е. (144 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
	Всего	Семестр №8
Контактная работа при проведении учебных занятий (всего):	96	96
В том числе:		
Занятия лекционного типа	48	48
Занятия семинарского типа	48	48

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 48 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

No	
л⁄п	Тематика лекционных занятий / краткое содержание
	л »
1	Пути развития электрической тяги.
	История развития электрических железных дорог. Значение электрифицированных железных дорог.
2	Сравнение эксплуатационных показателей электровоза и тепловоза.
2	Уравнение движения поезда.
	Вывод уравнения движения поезда. Силы, действующие на поезд. Режимы движения поезда.
3	Сила сопротивления движению поезда.
	Основное сопротивление движению поезда, электровоза, вагонов. Дополнительное сопротивление
	движению поезда.
4	Тормозная сила при механическом торможении.
	Коэффициент трения. Расчетный тормозной коэффициент. Устойчивость механического торможения.
5	Тормозные задачи.
	Типы тормозных задач: определение максимально возможной скорости начала торможения;
	определение тормозного пути; определение тормозных средств поезда; определение уклона. Решение
	тормозных задач.
6	Сила тяги.
	Реализация силы тяги. Коэффициент сцепления, сила сцепления. Способы увеличения силы
	сцепления.
7	Факторы, определяющие величину коэффициента сцепления колес локомотива с
	рельсами.
	Физико-химические свойства материала бандажа и рельса и состояние опорной поверхности. Влияние
	электрической схемы силовых цепей ЭПС. Влияние механической части ЭПС. Режимы движения
	ЭПС. Статистические характеристики коэффициента сцепления колес локомотива с рельсами.
8	Характеристики тягового режима ЭПС.
	Электромеханические характеристики тягового двигателя, отнесенные к ободу колеса. Тяговая
	характеристика.
9	Влияние жесткости характеристик ЭПС на использование мощности и
	эксплуатационные показатели
	Требования к электрической и механической устойчивости. Требования к равномерному
	распределению нагрузок. Требования к колебаниям напряжения контактной сети. Отсутствие резкого
	изменения мощности при изменении нагрузки. Переход в режим электрического рекуперативного
	торможения. Условия сцепления колес электровоза с рельсами.
10	Характеристики ЭПС при регулировании возбуждения тяговых двигателей.
	Шунтирование обмотки возбуждения резисторами. Шунтирование обмотки возбуждения резисторами.
	Процесс изменения скорости ЭПС при регулировании возбуждения. Применение ослабления
	возбуждения для реализации дополнительных позиций регулирования.
11	Плавное регулирование напряжения в тяговом режиме.
	Плавное регулирование на ЭПС постоянного тока. Плавное регулирование на ЭПС переменного тока.
	Преимущества и недостатки. Принципы регулирования скорости ЭПС с бесколлекторными тяговыми
	двигателями. Регулирование режимов работы асинхронных тяговых двигателей.
12	Тяговые расчеты, типы задач.
	Порядок решения задач. Определение веса поезда. Построение кривых движения поезда.
13	Определение расхода электроэнергии на тягу поезда.
	Определение расхода электроэнергии на тягу поезда для ЭПС постоянного и переменного тока.
	Полный и удельный расход электроэнергии.
14	Аналитический метод расчета расхода электроэнергии на тягу поезда.
	Аналитический метод расчета расхода электроэнергии на тягу поезда при электровозной и
	моторвагонной тяге. Энергетика пуска. Коэффициент пусковых потерь.
15	Электрическое торможение ЭПС.

№ п/п	Тематика лекционных занятий / краткое содержание
	Виды электрического торможения. Преимущества и недостатки.
	Реостатное торможение с последовательным и независимым возбуждением. Характеристики
	реостатного торможения.
16	Рекуперативное торможение ЭПС постоянного тока.
	Исследование системы рекуперативного торможения с последовательным возбуждением на
	электрическую устойчивость. Рекуперативное торможение с независимым возбуждением.
	Характеристики системы рекуперативного торможения с противовозбуждением возбудителя.
17	Рекуперативное торможение ЭПС однофазно-постоянного тока.
	Принципиальная схема силовых цепей электровоза в режиме электрического торможения.
	Регулирование режимов работы. Способы регулирования.

4.2. Занятия семинарского типа.

Практические занятия

No	Тематика практических занятий/краткое содержание		
п/п			
1	Процесс движения поезда		
	Рассматриваемые вопросы:		
	- при электрической тяге постоянного и переменного тока		
2	Силы сопротивления движению поезда		
	Рассматриваемые вопросы:		
	- Определение и расчет сил опротивления движению от кривых участков пути		
3	Сила сцепления колес с рельсами		
	Рассматриваемые вопросы:		
	- расчет коэффициента сцепления, построение ограничений по сцеплению колес с рельсом		
4	Спрямление профиля пути		
	Рассматривамые вопросы:		
	- опеределение эквивалентного уклона, расчетного подьема		
5	Расчет массы поезда		
	Рассматриваемые вопросы:		
	- проверка массы поезда по различным условиям		
6	Удельные силы, действующие на поезд		
	Рассматриваемые вопросы:		
	- расчет и построение удельных ускоряющих и замедляющих сил		
7	Построение кривых движения грузовогопоезда		
	Рассматриваемые вопросы:		
	- построение кривых скорости от пути, времени от пути, тока электровоза от пути, определение		
	температуры нагрева электрооборудования для ЭПС постоянного и переменного тока		
8	Энергетика движения поезда		
	Рассматриваемые вопросы:		
	- расчет расхода электроэнергии на тягу поезда, определение удельного расхода для эектровозов		
	постоянного и переменного тока		

4.3. Самостоятельная работа обучающихся.

№ п/п		Вид самостоятельной работы
1	Робота с литературой	

№ п/п	Вид самостоятельной работы
2	Подготовка к практическим занятиям
3	Выполнение курсовой работы.
4	Подготовка к промежуточной аттестации.
5	Подготовка к текущему контролю.

4.4. Примерный перечень тем курсовых работ

Тяговые расчеты для грузовых поездов в тяге с электровозами переменного тока различных серий с индивидуальными заданиями профиля пути, длинами тормозного пути. Расчеты предусматривают механическое и электрическое торможение.

Примерные варианты заданий.

- 1. Электровоз ВЛ80Т. Нагрузка на ось 24т. Путь- бесстыковой. Вагоны 8 осный (100т), 4 осный с роликовыми подшипниками(75т). Тормозной путь 1200м. Реостатное торможение.
- 2. Электровоз ВЛ80С. Нагрузка на ось 23т. Путь- звеньевой. Вагоны 4 осный с подшипниками скольжения (54т), 4 осный с роликовыми подшипниками(70т). Тормозной путь 900м. Реостатное торможение.
- 3. Электровоз ВЛ60. Нагрузка на ось 22т. Путь- звеньевой. Вагоны 4 осный с подшипниками скольжения (54т), 8 осный (105т). Тормозной путь 1000м. Рекуперативное торможение.
- 4. Электровоз ВЛ80Т. Нагрузка на ось 25т. Путь- бесстыковой. Вагоны 4 осный с роликовыми подшипниками(72т), 4 осный с подшипниками скольжения(75т). Тормозной путь 1100м. Реостатное торможение.
- 5. Электровоз ВЛ80С. Нагрузка на ось 23,5 т. Путь- звеньевой. Вагоны 8 осный (110т), 4 осный с роликовыми подшипниками(78т). Тормозной путь 1200 м. Реостатное торможение.
- 6. Электровоз ВЛ60. Нагрузка на ось 24,6т. Путь- звеньевой. Вагоны 4 осный с роликовыми подшипниками (68 т), 8 осный (108 т). Тормозной путь 900м. Рекуперативное торможение.
- 7. Электровоз ВЛ80Т. Нагрузка на ось 22,8т. Путь- бесстыковой. Вагоны 4 осный с подшипниками скольжения (56 т), 8 осный (104 т). Тормозной путь 1000м. Реостатное торможение.
- 8. Электровоз ВЛ80С. Нагрузка на ось 24.4 т. Путь- звеньевой. Вагоны 8 осный (100 т), 4 осный с роликовыми подшипниками(72 т). Тормозной путь 1000 м. Реостатное торможение.
- 9. Электровоз ВЛ60. Нагрузка на ось 22,2 т. Путь- бесстыковой. Вагоны 4 осный с роликовыми подшипниками (78 т), 8 осный (100 т). Тормозной

- путь 1200 м. Рекуперативное торможение.
- 10. Электровоз ВЛ80Т. Нагрузка на ось 25 т. Путь звеньевой. Вагоны 4 осный с подшипниками скольжения (56 т), 4 осный с подшипниками качения (66 т). Тормозной путь 1000м. Реостатное торомжение.
- 5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Теория электрической тяги В.Е. Розенфельд, И.П. Исаев, Н.Н. Сидоров, М.И. Озеров; Под ред. И.П. Исаева Однотомное издание Транспорт, 1995	НТБ (ЭЭ); НТБ (уч.3); НТБ (фб.); НТБ (чз.1); НТБ (чз.2); НТБ (чз.4)
2	Основы электрической и тепловозной тяги С.И. Осипов Однотомное издание Транспорт, 1985	Библиотека МКТ (Люблино); НТБ (уч.3); НТБ (уч.6); НТБ (фб.)
3	Правила тяговых расчетов для поездной работы МПС РФ, ВНИИЖТ Однотомное издание Транспорт , 1985	Библиотека МКТ (Люблино); НТБ (уч.1); НТБ (уч.2); НТБ (уч.3); НТБ (уч.4); НТБ (уч.6); НТБ (фб.); НТБ (чз.1); НТБ (чз.2)
4	Доронина, И. И. Теория электрической тяги: учебное пособие / И. И. Доронина. — Хабаровск: ДВГУПС, 2019. — 81 с. — Текст: электронный // Лань: электронно-библиотечная система	URL: https://e.lanbook.com/book/179413 (дата обращения: 16.09.2025). — Режим доступа: для авториз. пользователей.
5	ЕОРИЯ ЭЛЕКТРИЧЕСКОЙ ТЯГИ Учебник ISBN: 5-89035-333-0 Год издания: 2006 Место издания: МоскваЧисло страниц: 436	https://elibrary.ru/sdrqhd

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Информационный портал Научная электронная библиотека eLIBRARY.RU (www.elibrary.ru);

Научно-техническая библиотека РУТ (МИИТ) (http://library.miit.ru Инструкции РЖД. https://instructionsrzd.ucoz.ru/load/vse_po_ehlektrovozam

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Для выполнения курсового проекта необходимо использовать в расчетах

программное обеспечение Excel или Mathcad

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Для проведения практических занятий необходимо иметь: стенд с электрическими машинами, одна из которых работает в режиме двигателя; компьютерный имитационный стенд кабины машиниста. На стендах проводят занятия по следующим разделам:

9. Форма промежуточной аттестации:

Курсовая работа в 8 семестре.

Экзамен в 8 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, доцент, к.н. кафедры

«Электропоезда и локомотивы» А.А. Чучин

Согласовано:

Заведующий кафедрой ЭиЛ О.Е. Пудовиков

Председатель учебно-методической

комиссии С.В. Володин