МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы специалитета по специальности 23.05.03 Подвижной состав железных дорог, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Теплотехника

Специальность: 23.05.03 Подвижной состав железных дорог

Специализация: Пассажирские вагоны

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 377843

Подписал: заведующий кафедрой Дмитренко Артур

Владимирович

Дата: 29.05.2025

1. Общие сведения о дисциплине (модуле).

Целью освоения учебной дисциплины «Теплотехника» является приобретение в процессе подготовки студентов специальности 23.05.03 "Подвижной состав железных дорог" профиля "Пассажирские вагоны" знаний, направленных на рациональное получение, преобразование, передачу и использование тепловой энергии, что позволяет добиться при эксплуатации теплотехнических и теплотехнологических установок и систем максимальной экономии природных энергетических ресурсов и материалов, интенсификации технологических процессов, выявлению и использованию вторичных энергоресурсов, защите окружающей среды и безопасности людей.

Задачей изучения дисциплины является овладение студентами методами расчета рабочего процесса, навыками грамотной эксплуатации современного теплового, холодильного и компрессорного оборудования с целью максимальной экономии топлива и материалов. уменьшения загрязнения окружающей среды.

2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ОПК-1 - Способен решать инженерные задачи в профессиональной деятельности с использованием методов естественных наук, математического анализа и моделирования.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

методы теплотехнических расчетов элементов технологического оборудования

Уметь:

индивидуально разработать (принять) план решения конкретной задачи технической термодинамики и теплопередачи применительно к элементу (узлу) теплотехнологической установки или системы

Владеть:

навыками термодинамического анализа на уровне, необходимом для получения результатов решения задач технической термодинамики и

теплопередачи применительно к теплотехническим и тепло-технологическим установкам и системам

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 3 з.е. (108 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
	Всего	Семестр №6
Контактная работа при проведении учебных занятий (всего):	64	64
В том числе:		
Занятия лекционного типа	32	32
Занятия семинарского типа	32	32

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 44 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

No			
	Тематика лекционных занятий / краткое содержание		
п/п	·		
1	Понятие о технической термодинамике.		
	Рассматриваемые вопросы:		
	Термодинамическая система и окружающая среда. Рабочее тело. Параметры состояния		
	термодинамической системы. Уравнение состояния идеальных газов. Термодинамический процесс		
	(равновесный, неравновесный, обратимый, необратимый, круговой). Функции состояния простого		
	тела.		
2	Теплота, внутренняя энергия, работа расширения.		
Рассматриваемые вопросы:			
	Понятия теплоты и работы как вида энергии, их отличие. Теплоемкость тела: полная, удельные		
	массовая, объемная, мольная, истинная и средняя. Аналитическое выражение первого закона		
	термодинамики для закрытой системы. Уравнение Майера. Энтальпия, техническая работа.		
	Аналитическое выражение первого закона термодинамики для открытой системы.		
3	Закон Дальтона.		
	Рассматриваемые вопросы:		
	Понятие смеси газов, давление смеси, парциальное давление. Определение молекулярной массы и		
	газовой постоянной смеси. Соотношение между массовыми и объемными долями смеси.		
4	Термодинамические процессы идеальных газов.		
	Рассматриваемые вопросы:		
	Составляющие метода исследования процессов. Изохорный, изобарный, изотермический,		
	адиабатный, политропный процессы.		
5	Энтропия.		
	Рассматриваемые вопросы:		
	Понятие энтропии как функция состояния тела. Тепловая Т-s-диаграмма. Второй закон		
	термодинамики. Исследование прямых и обратных циклов Определение изменения энтропии.		
	Эксергия как мера работоспособности системы, массы вещества в объеме, потока теплоты и потока		
	вещества. Эксергетический КПД.		
6	Реальные газы и пары.		
	Рассматриваемые вопросы:		
	Уравнение состояния реальных газов Ван-дер-Ваальса. Водяной пар. p-v, T-s, h-s – диаграммы водяного пара. Изображения термодинамических процессов на диаграммах. Влажный воздух. h-d		
	диаграмма влажного воздуха.		
7			
7	Двигатели внутреннего сгорания и холодильные машины.		
	Рассматриваемые вопросы:		
	Циклы ДВС. Термический КПД. Сравнение циклов ДВС. Действительные циклы ДВС. Цикл ВХМ. Регенерация теплоты в цикле ВХМ. Принципиальная схема и действительный цикл ПКХМ.		
	Регенерация теплоты в цикле в мм. принципиальная схема и деиствительный цикл пкмм. Регенерация теплоты (холода) в цикле ПКХМ. Термодинамический анализ цикла теплового насоса.		
	Термоэлектрическая холодильная установка.		
8	Истечения из сопел и диффузоров.		
U	Рассматриваемые вопросы:		
	Гассматриваемые вопросы: Основные закономерности соплового и диффузорного течения. Критическое отношение давлений.		
	Дросселирование и его физическая сущность.		
9	Компрессоры.		
	Рассматриваемые вопросы:		
	гассматриваемые вопросы. Одно- и многоступенчатый поршневой компрессор. Оптимальное распределение давлений по		
	ступеням сжатия. Соотношение между объемами цилиндров в многоступенчатом компрессоре.		
	Расчет мощности привода компрессора, отводимой теплоты от цилиндра. Лопаточный компрессор.		
	Струйный компрессор.		
10	Теплообмен.		
10	Рассматриваемые вопросы:		
	i acomarphibacinine nompoeni.		

No	Тематика лекционных занятий / краткое содержание		
Π/Π	тематика лекционных занятии / краткое содержание		
	Основные понятия теплоообмена. Виды теплопередачи, температурное поле, изотермическая		
	поверхность, полный и удельный тепловые потоки, температурный градиент.		
11	Теплопроводность.		
	Рассматриваемые вопросы:		
	Закон Фурье, коэффициент теплопроводности, теплопроводность плоской и цилиндрической стенок		
12	Нестационарная теплопроводность.		
	Рассматриваемые вопросы:		
	Критерии Био, Фурье. Расчёт теплопередачи при периодических тепловых воздействиях на кузов		
	вагона.		
13	Конвективный теплообмен.		
	Рассматриваемые вопросы:		
	Режимы движения жидкости, распределение скоростей по сечению по-тока. Уравнение Ньютона-		
	Рихмана.		
14	Теория подобия.		
	Рассматриваемые вопросы:		
	Определение коэффициента теплоотдачи с помощью теории подобия. Критерии подобия.		
	Теплопередача.		
15	Тепловое излучение.		
	Рассматриваемые вопросы:		
	Виды лучистых потоков. Поглощательная, отражательная, пропускная способности абсолютно		
	черных и белых, серых тел. Законы Планка, Стефана-Больцмана, Кирхгофа.		
16	Теплообменные аппараты.		
	Рассматриваемые вопросы:		
	Классификация. Схемы тока теплоносителей. Основные положения конструкторского и		
	поверочного теплового расчетов рекуперативных аппаратов, водяной эквивалент. Распределение		
	температур по длине теплообменников для различного тока теплоносителей, средний		
	температурный напор. Коэффициент теплопередачи. Гидродинамический расчёт. Показатели эффективности.		
	эффективности.		

4.2. Занятия семинарского типа.

Лабораторные работы

№	Наименование лабораторных работ / краткое содержание
п/п	танменование лаоораторных раоот / краткое содержание
1	Приборы и устройства для теплотехнических измерений
	В результате выполнения лабораторной работы студент получает практические навыки пользования
	приборами для измерения температуры, давления и расхода среды, знакомится с их принципами
	действия.
2	Уравнение состояния газа
	В результате выполнения лабораторной работы студент опытным путем определяет универсальную
	газовую постоянную и проводит исследование изотермического процесса.
3	Принцип работы и конструкция поршневых компрессоров
	В результате выполнения лабораторной работы студент знакомится с устройством, принципом
	действия одноступенчатого и многоступенчатого поршневых компрессоров.
4	Определение коэффициента теплопроводности металлов
	В результате выполнения лабораторной работы студент получает практические навыки
	определение коэффициента теплопроводности различных металлов: латуни, стали, меди.

No	Наименование лабораторных работ / краткое содержание		
п/п	пально порагоризм рассту пратисе содержание		
5	Определение коэффициента теплоотдачи цилиндра при естественной конвекции		
	В результате лабораторной работы студент получается навыки определения коэффициентов		
	теплоотдачи цилиндра при различных его положениях (горизонтальном и вертикальном) и		
	сравнивает значения при естественной конвекции.		
6	Определение коэффициента теплоотдачи цилиндра при вынужденной конвекции		
	В результате лабораторной работы студент получается навыки определения коэффициентов		
	теплоотдачи цилиндра при различных его положениях (горизонтальном и вертикальном) и		
	сравнивает значения при вынужденной конвекции.		
7	Исследование теплообмена излучением		
	В результате лабораторной работы студент приобретает навыки исследования теплообмена		
	излучением, определяет степень черноты излучающего тела и коэффициент излучения абсолютно		
	черного тела.		
8	Определение коэффициента теплопередачи		
	В результате выполнения лабораторной работы студент получает практические навыки		
	определения коэффициента теплопередачи тепломассообменного оборудования (гладкой и оребренной труб, нагревательного прибора, теплообменника).		

4.3. Самостоятельная работа обучающихся.

No	Вид самостоятельной работы
п/п	BILA COMPONICIONI POCCIDI
1	Проработка материалов лекций.
2	Подготовка к лабораторным работам и оформление отчета.
3	Работа с тестами и вопросами для самопроверки.
4	Подготовка к промежуточной аттестации.
5	Подготовка к текущему контролю.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Термодинамика и теплопередача. А.В. Костин;	НТБ (ЭЭ); НТБ (фб.); НТБ (чз.2)
	МИИТ. Каф. "Теплоэнергетика железнодорожного	
	транспорта". – М.: МИИТ, 2006. – 80 с.	
2	Теплоэнергетика железнодорожного транспорта.	НТБ (фб.)
	Б.Н. Минаев, Г.П. Мокриденко, Л.Я. Левенталь;	
	Под общ. ред. Б.Н. Минаева. Однотомное издание.	
	– М.: МИИТ, 2006. – 345 с. ISBN 5-7876-0114-9	
3	Воронова Л.А., Гусев Г.Б., Костин А.В.	НТБ (ЭЭ); НТБ (фб.); НТБ (чз.2)
	Термодинамика и теплопередача. Методические	
	указания к лабораторным работам по дисциплине	
	«Термодинамика», «Термодинамика и	
	теплопередача». – М.: МИИТ, 2011. – 36 с.	

4	Термодинамика и тепломассообмен (основы	НТБ (уч.6); НТБ (фб.); НТБ
	теории, задачи и расчетные соотношения): учеб.	(чз.2)
	пособие / Б.Н. Минаев, А.В. Костин, Л.А.	
	Воронова. МИИТ. Каф. "Теплоэнергетика	
	железнодорожного транспорта". – М.: МИИТ,	
	2013. – 76 c.	
5	Поршневые компрессоры Г.Б.Гусев, А.В.Костин,	НТБ (ЭЭ); НТБ (уч.6)
	Л.Я.Левенталь,; МИИТ. Каф. "Теплоэнергетика	
	железнодорожного транспорта" М.: МИИТ,	
	2010. − 23 c.	
6	Техническая термодинамика и теплопередача.	НТБ (уч.3); НТБ (фб.); НТБ
	В.Д. Карминский. Однотомное издание – М.:	(чз.2)
	Маршрут, 2005. – 224 с. ISBN 5-89035-202-4	
7	Приборы для теплотехнических измерений А.В.	НТБ (ЭЭ); НТБ (уч.6)
	Костин, И.И. Фроликов, Н.Б. Горячкин; МИИТ.	
	Каф. "Теплоэнергетика железнодорожного	
	транспорта". – М.: МИИТ, 2005. – 16 с.	
8	Теплопередача через ограждения кузова вагона.	НТБ (уч.6); НТБ (фб.); НТБ
	А.В. Костин; МИИТ. Каф. "Теплоэнергетика	(чз.2)
	железнодорожного транспорта". – М.: МИИТ,	
	2003. – 44 c.	
9	Круглов Г. А., Булгакова Р. И., Круглова Е. С.	https://e.lanbook.com/book/263066
	Теплотехника: Учебное пособие для вузов	
	Издательство "Лань", 2022, 208 с. ISBN 978-5-507-	
	45269-9	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

http://library.miit.ru/ - электронно-библиотечная система Научно-технической библиотеки МИИТ;

http://elibrary.ru/ - научно-электронная библиотека.

Поисковые системы: Yandex, Mail.

http://www.twirpx.com/ - электронная библиотека.

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Microsoft Office не ниже Microsoft Office 2007.

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Основная лекционная аудитория, а также помещения лабораторий кафедры «Теплоэнергетика транспорта» МИИТа оборудованы мультимедийными комплексами. Рабочее место преподавателя с персональным компьютером, подключёно к сетям INTERNET.

Имеется комплект переносных инструментов и оборудования для проведения энергетических обследований.

9. Форма промежуточной аттестации:

Зачет в 6 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, доцент, к.н. кафедры «Теплоэнергетика транспорта» Института транспортной техники и систем управления

А.В. Костин

Согласовано:

Заведующий кафедрой ВВХ Г.И. Петров

Заведующий кафедрой ТТ А.В. Дмитренко

Председатель учебно-методической

комиссии С.В. Володин