МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА (МИИТ)»

УТВЕРЖДАЮ:

Директор ИТТСУ

П.Ф. Бестемьянов

25 мая 2018 г.

Кафедра «Технология транспортного машиностроения и ремонта

подвижного состава»

Автор Фроликов Илья Иванович, к.т.н., доцент

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Теплофизика в технологических процессах

Направление подготовки: 15.03.05 – Конструкторско-технологическое

обеспечение машиностроительных производств

Профиль: Технология машиностроения

Квалификация выпускника: Бакалавр

Форма обучения: заочная

Год начала подготовки 2018

Одобрено на заседании

Учебно-методической комиссии института

Протокол № 10 21 мая 2018 г.

Председатель учебно-методической

комиссии

С.В. Володин

Одобрено на заседании кафедры

Протокол № 10 15 мая 2018 г.

Заведующий кафедрой

М.Ю. Куликов

1. ЦЕЛИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Теплофизика в технологических процессах изучает законы самопроизвольно-го и вынужденного переноса тепловой энергии в пространстве с неравномер-ным распределением температуры и концентраций компонентов.

Целью освоения учебной дисциплины «Теплофизика в технологических процессах » является формирование в процессе подготовки бакалавров по направлению 15.03.01 Конструкторско-технологическое обеспечение ма-шиностроительных производств компетенций, позволяющих с использовани-ем методов теории теплоообмена рассчитывать потоки теплоты в процессах энергопереноса, которые осуществляются в природе и сопровождают работу разнообразных теплотехнологических устройств при обработке материалов в различных технологических установках.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Учебная дисциплина "Теплофизика в технологических процессах" относится к блоку 1 "Дисциплины (модули)" и входит в его вариативную часть.

2.1. Наименования предшествующих дисциплин

Для изучения данной дисциплины необходимы следующие знания, умения и навыки, формируемые предшествующими дисциплинами:

2.1.1. Математика:

Знания: основные понятия и методы математического анализа, аналитической геометрии, дифференциального и интегрального исчисления

Умения: приобретать новые математические и естественнонаучные знания, использовать современныеобразовательные и информационные технологии

Навыки: методами математического описания физических явлений и процессов, определяющих принципы работы различных технических устройств и численными методами решения теплофизических задач

2.1.2. Физика:

Знания: смысл основных физических явлений, фундаментальных понятий, законы классической и современной физики

Умения: уметь применять полученные знания при решении практических задач теплофизического профиля

Навыки: методы физического эксперимента и обработки экспериментальных данных

2.2. Наименование последующих дисциплин

Результаты освоения дисциплины используются при изучении последующих учебных дисциплин:

- 2.2.1. Надёжность и диагностика технологических систем
- 2.2.2. Технология машиностроения

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ), СООТНЕСЕННЫЕ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

В результате освоения дисциплины студент должен:

№ п/п	Код и название компетенции	Ожидаемые результаты
1	ПК-2 способностью использовать методы стандартных испытаний по определению физико-механических свойств и технологических показателей материалов и готовых машиностроительных изделий, стандартные методы их проектирования, прогрессивные методы эксплуатации изделий	Знать и понимать: основные закономерности теплопереноса в твердых телах, а также газообразных и жидких средах, физические основы закономерностей теплопереноса для выявления сущности проблем, возникающих в ходе профессиональной деятельности Уметь: использовать эти знания для восприятия новой информации, соответствующей особенностям процессов теплопереноса и анализа температурного режима, применять эти знания для выбора оптимального физико-математического аппарата, свойственного решению соответствующей проблемы. Владеть: знаниями и умениями достаточными для постановки цели и выбора путей решения практических задач в области теплопереноса

4. ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ) В ЗАЧЕТНЫХ ЕДИНИЦАХ И АКАДЕМИЧЕСКИХ ЧАСАХ

4.1. Общая трудоемкость дисциплины составляет:

2 зачетные единицы (72 ак. ч.).

4.2. Распределение объема учебной дисциплины на контактную работу с преподавателем и самостоятельную работу обучающихся

	Количеств	о часов
Вид учебной работы	Всего по учебному плану	Семестр 6
Контактная работа	12	12,25
Аудиторные занятия (всего):	12	12
В том числе:		
лекции (Л)	4	4
практические (ПЗ) и семинарские (С)	8	8
Самостоятельная работа (всего)	56	56
ОБЩАЯ трудоемкость дисциплины, часы:	72	72
ОБЩАЯ трудоемкость дисциплины, зач.ед.:	2.0	2.0
Текущий контроль успеваемости (количество и вид текущего контроля)	КРаб (1), ПК1	КРаб (1), ПК1
Виды промежуточной аттестации (экзамен, зачет)	34	3Ч

4.3. Содержание дисциплины (модуля), структурированное по темам (разделам)

						еятельнос терактивн			Формы текущего
№ п/п	Семестр	Тема (раздел) учебной дисциплины	Ιſ	JIP	113	KCP	CP	Всего	контроля успеваемости и промежу- точной
1	2	3	4	5	6	7	8	9	аттестации 10
1	6	Раздел 1	1	3	2	/	12	15	КРаб
1	0	Предмет и задачи теории теплообмена. Учение о теплопроводности.	1		2		12	13	KPao
2	6	Раздел 2 Стационарная теплопроводность плоской стенки. Стационарная теплопроводность цилиндрической стенки. Стационарная теплопроводность ребра, двумерные задачи. Нестационарная теплопроводность.	1		4		24	29	ПК1
3	6	Раздел 3 Прямой теплообмен. Лучистый теплообмен.Теплообменные аппараты.Анализ тепловых процессов в технологических системах.	2		2		20	24	
4	6	Раздел 4						4	34
5		зачет Тема 1.1							
		Основные понятия и определения. Инженерные задачи в области теплообмена. Основные виды передачи тепло-ты							
6		Тема 1.2 Температурное поле. Градиент температуры. Тепловой поток. Закон Фурье. Коэффициент теплопроводности. Дифференциальное уравнение теплопроводности. Условия однозначности для процессов теплопроводности. Виды граничных условий.							
7		Тема 2.3 Стационарная теплопроводность плоской однослойной и многослойной стенки при граничных условиях 1 рода. Стационарная теплопроводность плоской							

							сти в часа пой форм		Формы текущего
№ п/п	Семестр	Тема (раздел) учебной дисциплины	Л	JIP	II3	KCP	CP	Всего	контроля успеваемости и промежу-точной аттестации
1	2	3	4	5	6	7	8	9	10
		однослойной стенки с учетом зависимости коэффициента теплопроводности от температуры. Стационарная теплопроводность плоской однослойной и многослойной стенки при граничных условиях 3 рода. Стационарная теплопроводность плоской однослойной стенки при граничных условиях 2 и 3 рода.							
8		Тема 2.4 Стационарная теплопроводность цилиндрической стенки при граничных условиях 1 рода Стационарная теплопроводность цилиндрической стенки при граничных условиях 3 рода. Понятие о критическом диаметре тепловой изоляции.							, тестирование
9		Тема 2.5 Пути интенсификации теплопередачи. Теплопровод-ность ребра постоянного поперечного сечения. Стацио-нарная одномерная теплопроводность плоской одно-родной пластины с внутренними источниками теплоты при граничных условиях 1 и 3 рода. Стационарная од-номерная теплопроводность цилиндрического однородного стержня свнутренними источниками теплоты при граничных условиях 1 и 3 рода							
10		Тема 2.6 Расчет нагрева и охлаждения термически тонких тел. Аналитическое решение нестационарных задач тепло-проводности. Нестационарная теплопроводность бесконечной плоской пластины при граничных условиях 3 рода. Нестационарная							

							сти в часа пой форме		Формы текущего
№ п/п	Семестр	Тема (раздел) учебной дисциплины	Л	ЛР	ПЗ	KCP	СР	Всего	контроля успеваемости и промежу-точной аттестации
1	2	3	4	5	6	7	8	9	10
		теплопроводность в неограни-ченном теле. Понятие о численных методах решения задач							
11		Тема 3.7 Коэффициент теплоотдачи. Понятие о теории подобия. Метод теории подобия для получения критериев подобия. Метод анализа размерностей. Критерии подобия конвективной теплоотдачи и гидродинамики. Критериальные уравнения для вынужденной и свободной кон-векции.							тестирование
12		Тема 3.8 Общие представления о переносе энергии излучением. Селективная и серая среда. Собственное излучение теплообмен излучением между двумя парал-лельными пластинами. Влияние экранов на лучистый теплообмен. Теплообмен излучением между телом и оболочкой. Теплообмен излучением между телами произвольно расположенными в пространстве Поня-тие о сложном теплообмене							
13		Тема 3.9 Виды теплообменных аппаратов. Принципы расчета рекуперативных теплообменных аппаратов. Определение среднелогарифмического температурного напора. Схематизация процессов теплопередачи при обработке материалов резанием. Основные положения метода источников теплоты. Мгновенные источники теплоты в неограниченных телах. Непрерывно действующие ис-точники теплоты. Движущиеся источники теплоты. Движущиеся источники теплоты.							

				Виды уч	Формы				
				в том ч	исле инт	ерактивн	ой форм	e	текущего
No	Семестр	Тема (раздел) учебной							контроля
п/п	Ме	дисциплины							успеваемости и
11/11	Ç	дисциплины				_		2	промежу-
				JIP	113	KCP	CP	Всего	точной
			П	L)	Ί	K)	Е	аттестации
1	2	3	4	5	6	7	8	9	10
		Быстродвижущиеся							
		источники теплоты.							
14	•	Всего:	4		8		56	72	

4.4. Лабораторные работы / практические занятия

Лабораторные работы учебным планом не предусмотрены.

Практические занятия предусмотрены в объеме 8 ак. ч.

№ п/п	№ семестра	Тема (раздел) учебной дисциплины	Наименование занятий	Всего ча- сов/ из них часов в интерак- тивной форме
1	2	3	4	5
1	6	РАЗДЕЛ 1 Предмет и задачи теории теплообмена. Учение о теплопроводности.	Простые составляющие переноса теплоты. Скалярные и векторные поля физических величин.	1
2	6	РАЗДЕЛ 1 Предмет и задачи теории теплообмена. Учение о теплопроводности.	Вектор-градиент температурного поля. Уравнение теплопроводности. Физический смысл условий однозначности	1
3	6	РАЗДЕЛ 2 Стационарная теплопроводность плоской стенки. Стационарная теплопроводность цилиндрической стенки. Стационарная теплопроводность ребра, двумерные задачи. Нестационарная теплопроводность.	Одномерная стационарная теплопроводность в плоской стенке без внутренних источников теплоты при различных гранич-ных условиях	1
4	6	РАЗДЕЛ 2 Стационарная теплопроводность плоской стенки. Стационарная теплопроводность цилиндрической стенки. Стационарная теплопроводность ребра, двумерные задачи. Нестационарная теплопроводность.	. Одномерная стационарная теплопровод-ность в цилиндрической стенке без внут-ренних источников теплоты при различных граничных условиях.	1
5	6	РАЗДЕЛ 2 Стационарная теплопроводность плоской стенки. Стационарная теплопроводность цилиндрической стенки. Стационарная теплопроводность ребра, двумерные задачи. Нестационарная теплопроводность.	Расчет теплопроводности в одномерных стенках с внутренними источниками теплоты. Расчет ребра прямоугольного сечения. Постановка двумерных стационарных задач.	1

№ п/п	№ семестра	Тема (раздел) учебной дисциплины	Наименование занятий	Всего ча- сов/ из них часов в интерак- тивной форме
1	2	3	4	5
6	6	РАЗДЕЛ 2 Стационарная теплопроводность плоской стенки. Стационарная теплопроводность цилиндрической стенки. Стационарная теплопроводность ребра, двумерные задачи. Нестационарная теплопроводность.	Охлаждение тела, обладающего высоким коэффициентом теплопроводности. Определение нестационарного температурного поля с использованием зависимостей? =?(Bi, Fo)	1
7	6	РАЗДЕЛ 3 Прямой теплообмен. Лучистый теплообмен. Теплообменные аппараты. Анализ тепловых процессов в технологических системах.	Расчет конвективной теплоотдачи при вынужденной и свободной конвекции с использованием теории подобия	1
8	6	РАЗДЕЛ 3 Прямой теплообмен. Лучистый теплообмен.Теплообменные аппараты.Анализ тепловых процессов в технологических системах.	Расчет теплового состояния с использова-нием метода мгновенных источников тепло-ты	1
	1		ВСЕГО:	8 / 0

4.5. Примерная тематика курсовых проектов (работ)

Курсовые работы (проекты) не предусмотрены.

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В процессе обучения должны использоваться интерактивные формы проведения занятий, связанные с обсуждением теплофизических проблем дисциплины «Теплофизика в технологических процессах» и приложением закономерностей теплопереноса к решению практических задач .

В соответствии с учебным планом объем интерактивной формы обучения соответ-ствует следующему количеству часов: в пятом семестре – 9 часов.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

№ п/п	№ семестра		Вид самостоятельной работы студента. Перечень учебно-методического обеспечения для самостоятельной работы	Всего часов
1	6	3 РАЗДЕЛ 1 Предмет и задачи теории теплообмена. Учение о теплопроводности.	4 Скалярные и векторные поля физических величин. Поверхности постоянного уровня и вектор-градиент. Скалярные и векторные поля физических величин. Поверхности постоянного уровня и вектор-градиент.	<u>5</u> 6
2	6	РАЗДЕЛ 1 Предмет и задачи теории теплообмена. Учение о теплопроводности.	Вывод уравнений сохранения массы и энергии, а также движения вязкой сре-ды. Физический смысл условий однозначности.	6
3	6	РАЗДЕЛ 2 Стационарная теплопроводность плоской стенки. Стационарная теплопроводность цилиндрической стенки. Стационарная теплопроводность ребра, двумерные задачи. Нестационарная теплопроводность.	Ознакомление с методами решения задач теплопроводности (численные, классические, операционные методы).	6
4	6	РАЗДЕЛ 2 Стационарная теплопроводность плоской стенки. Стационарная теплопроводность цилиндрической стенки. Стационарная теплопроводность ребра, двумерные задачи. Нестационарная теплопроводность.	Теоремы и следствия теории подобия. Система уравнений конвективного теплообмена и условий однозначности в относительной форме. Симплексы и критерии подобия.	6
5	6	РАЗДЕЛ 2 Стационарная теплопроводность плоской стенки. Стационарная теплопроводность цилиндрической стенки. Стационарная теплопроводность ребра, двумерные задачи. Нестационарная теплопроводность.	Основы теории гидродинамического и теплового пограничных слоев. Методы интенсификации конвективного теплообмена в однофазной среде.	6
6	6	РАЗДЕЛ 2 Стационарная теплопроводность плоской стенки. Стационарная теплопроводность цилиндрической стенки. Стационарная теплопроводность ребра, двумерные задачи. Нестационарная	Влияние различных факторов на величину плотности теплового потока.	6

		теплопроводность.		
7	6	РАЗДЕЛ 3	Вывод формулы Нуссельта для	6
		Прямой теплообмен.	ламинарного течения.	
		Лучистый		
		теплообмен.Теплообменные		
		аппараты. Анализ тепловых		
		процессов в		
		технологических системах.		
8	6	РАЗДЕЛ 3	Теплообмен излучением между	7
		Прямой теплообмен.	произвольно расположенными в	
		Лучистый	пространстве серыми поверхностями.	
		теплообмен.Теплообменные		
		аппараты. Анализ тепловых		
		процессов в		
		технологических системах.		
9	6	РАЗДЕЛ 3	Критериальные уравнения совместно	7
		Прямой теплообмен.	протекающих процессов тепло-и мас-	
		Лучистый	сообмена. Теплогидравлическая	
		теплообмен.Теплообменные	эффективность рекуперативных	
		аппараты. Анализ тепловых	теплообменников.	
		процессов в		
		технологических системах.		
			ВСЕГО:	56

7. ПЕРЕЧЕНЬ ОСНОВНОЙ И ДОПОЛНИТЕЛЬНОЙ ЛИТЕРАТУРЫ, НЕОБХОДИМОЙ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

7.1. Основная литература

№ п/п	Наименование Тепломасообмен: учебное	Автор (ы) Цветков Ф.Ф., Григорьев		Используется при изучении разделов, номера страниц Все разделы
	пособие для вузов/3-е изд., стереот.	Б.А	дом МЭИ, 2006	
2	Задачник по тепломассообмену: учебное пособие для вузов/3-е изд., стереот	Цветков Ф.Ф., Керимов Р.В., Величко В.И	М.: Издательский дом МЭИ, 2010	Все разделы
3	Теплоэнергетика железнодорожного транспорта	Минаев Б.Н.	М.: ФГБОУ, 2013	Все разделы
4	Теплотехника на подвижном составе железных дорог: Учебное пособие для вузов жд. транспорта.	Киселёв И.Г.	М.:ГОУ «Учебно- методический центр по образованию на железнодорожном транспорте», 2008	Все разделы
5	Термодинамика и тепломас- сообмен (основы теории, за- дачи и расчётные соотноше- ния)	Минаев Б.Н., Костин А.В., Во-ронова Л.А.	М.: МИИТ, 2013	Все разделы
6	Задачник по процессам тепломассообмена	Авчухов В.В.,Паюсте Б.Я.	Энергоатомиздат, 1986 НТБ МИИТа 536.2 A22	Все разделы
7	Тепловые процессы в технологмческих системах	Резников А. Н., Резников Л.А.	Машиностроение, 1990 НТБ МИИТа 621.9 Р34	Все разделы

7.2. Дополнительная литература

№ п/п	Наименование	Автор (ы)	Год и место издания Место доступа	Используется при изучении разделов, номера страниц
8	Теплопередача	Юдаев Б.Н.	М.: Высшая шко-ла, 1973	Все разделы
9	Теплопередача	Исаченко В.П., Осипова В.А., Сукомел А.С.	М.: Энергия, 1975	Все разделы
10	Теплотехника	Под ред. Баскакова А.П.	Энергоатомиздат, 1991 НТБ МИИТа 621.1 Т34	Все разделы
11	Теория тепломассобмена	Леонтьев А.И.	М.: Высшая шко-ла, 1979	Все разделы

8. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ "ИНТЕРНЕТ", НЕОБХОДИМЫЕ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

При проведении учебных занятий по дисциплине «Тепломассообмен» используются возможности программного обеспечения Microsoft Office

9. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

http://library.miit.ru/ - электронно-библиотечная система Научно-технической библиотеки МИИТ.

- 2. http://rzd.ru/ сайт ОАО «РЖД».
- 3. http://elibrary.ru/ научно-электронная библиотека.
- 4. Поисковые системы: Yandex, Google, Mail

10. ОПИСАНИЕ МАТЕРИАЛЬНО ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Основная лекционная аудитория, а также помещения лабораторий кафед-ры ТЖТ оборудованы мультимедийными комплексами. Кафедра располагает материально-технической базой, необходимой для проведения лабораторных работ по дисциплине «Тепломассообмен»

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

Рекомендуется иметь конспект лекций. С помощью основной и до-полнительной литературы получить достаточный объем знаний, необходи-мый для расчета тепломассообменных процессов в теплоэнергетических ус-тановках и системах. Для подготовки к практическим занятиям следует воспользоваться конспектом лекций, а также информацией из рекомендованных литератур-ных источников, уделив особое внимание физическим основам рассматри-ваемой дисциплины. Дополнительные сведения можно получить с использо-ванием интернет-ресурсов