МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы магистратуры по направлению подготовки 09.04.01 Информатика и вычислительная техника, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Технологии больших данных

Направление подготовки: 09.04.01 Информатика и вычислительная

техника

Направленность (профиль): Компьютерные сети и технологии

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 4196

Подписал: заведующий кафедрой Желенков Борис

Владимирович

Дата: 22.10.2025

1. Общие сведения о дисциплине (модуле).

Целями освоения дисциплины (модуля) являются:

- изучение современных методов организации больших баз данных;
- изучение программных средств, используемых для организации хранения и обработки больших баз данных;
- изучение методов и программных средств для анализа больших баз данных.

Задачами освоения дисциплины (модуля) являются:

- разработка структур больших баз данных;
- написание запросов, работающих с большими базами данных;
- разработка приложений, использующих большие базы данных.
- 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-8** Способен осуществлять эффективное управление разработкой программных средств и проектов.;
- **ПК-5** Владение методами и алгоритмами решения задач обработки данных;
- **ПК-7** Применение перспективных методов исследования и решения профессиональных задач на основе знания мировых тенденций развития вычислительной техники и информационных технологий;
- **ПК-8** Понимание подходов к верификации моделей программного обеспечения.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- основные понятия больших баз данных,
- технологии построения распределенных баз данных,
- языки и алгоритмы обработки больших данных,
- методы верификации распределенных баз данных.

Уметь:

- описывать таблицы и материализованные представления,
- разрабатывать запросы на языке CQL,
- разрабатывать программы на языке Python с использованием Spark,
- разрабатывать модели анализа данных.

Владеть:

- языками описания схем баз данных,
- языками запросов к большим базам данных,
- средами разработки и отладки программ работы с большими данными,
- средствами проектирования моделей данных.
- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 6 з.е. (216 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
	Всего	Семестр №3
Контактная работа при проведении учебных занятий (всего):	48	48
В том числе:		
Занятия лекционного типа	32	32
Занятия семинарского типа	16	16

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 168 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

No		
п/п	Тематика лекционных занятий / краткое содержание	
1	Большие данные, анализ данных и наука о данных	
	Рассматриваемые вопросы:	
	- основные понятия	
	- источники больших данных,	
	- анализ данных,	
	- типы анализируемых данных,	
	- процесс обработки данных.	
2	Система управления базами данных Cassandra	
	Рассматриваемые вопросы:	
	- установка системы,	
	- работа с системой из командной строки,	
	- модель данных,	
	- пространство ключей,	
	- таблицы и материализованные представления,	
	- операции обновления данных,	
	- выполнение запросов.	
3	Распределение данных в системе Cassandra	
	Рассматриваемые вопросы:	
	- параллельные архитектуры,	
	- масштабирование баз данных,	
	- распределение данных в Cassandra,	
	- теорема САР, - обнаружение отказов,	
	- репликация данных	
4	Установка систем Spyder и Spark	
	Рассматриваемые вопросы:	
	- установка Spyder,	
	- установка рір,	
	- установка Spark.	
5	Система анализа Spark	
	Рассматриваемые вопросы:	
	- использование Spark в Spyder,	
	- наборы RDD,	
	- выполнение программы,	
	- Spark и Cassandra,	
	- работа с набором данных в Spyder	
6	Spark SQL	
	Рассматриваемые вопросы:	
	- выполнение запросов,	
7	Spark SQL(продолжение)	
	Рассматриваемые вопросы:	
	- соединение таблиц,	
8	Spark SQL(продолжение)	
	Рассматриваемые вопросы:	
	- функции агрегирования.	
9	Технология MapReduce	
	Рассматриваемые вопросы:	
	- процесс вычислений,	
	- функция map,	
	- функция reduce,	

№	Томотумую домунующим раздетий / утостую со допунующе
п/п	Тематика лекционных занятий / краткое содержание
10	Технология MapReduce(продолжение)
	Рассматриваемые вопросы:
	- умножение матрицы на вектор и на матрицу
11	Технология MapReduce(продолжение)
	Рассматриваемые вопросы:
	- реализация операций реляционной алгебры
12	Поиск похожих документов
	Рассматриваемые вопросы:
	- сходство множеств,
	- представление документа в виде множеств,
	- шинглы,
	- матричное представление множеств,
13	Поиск похожих документов(продолжение)
	Рассматриваемые вопросы:
	- минхэш-сигнатуры,
	- алгоритм определения похожих документов,
1.4	- метрики.
14	Поиск похожих документов в Spark
	Рассматриваемые вопросы:
	- сравнение двух множеств документов,
1.5	- сравнение документов с образцом.
15	Линейная регрессия
	Рассматриваемые вопросы:
	- машинное обучение, - оценка модели,
	- оценка модели, - библиотека функций машинного обучения,
	- линейная регрессия.
	- обучающий и тестовый наборы,
	- предсказание значений.
16	Линейная регрессия в Spark
	Рассматриваемые вопросы:
	- построение модели,
	- график простой линейной регрессии.
	· · · · · · · · · · · · · · · · · · ·

4.2. Занятия семинарского типа.

Лабораторные работы

№ п/п	Наименование лабораторных работ / краткое содержание		
1	Разработка базы данных в системе Cassandra.		
	В результате выполнения лабораторной работы студент получает навык проектирования базы		
	данных в NoSQL системе управления базами данных Cassandra.		
2	Обработка запросов в системе Cassandra.		
	В результате выполнения лабораторной работы студент получает навык выполнения запросов в		
	NoSQL системе управления базами данных Cassandra.		
3	Анализ данных в системе Spark. Выполнение запросов.		
	В результате выполнения лабораторной работы студент получает навык выполнения запросов в		
	системе Spark к данным, хранящимся в базе данных системы Cassandra.		

№ п/п	Наименование лабораторных работ / краткое содержание	
4	Анализ данных в системе Spark. Выполнение запросов, использующих несколько	
	таблиц.	
	В результате выполнения лабораторной работы студент получает навык выполнения запросов в	
	системе Spark к данным, хранящимся в базе данных системы Cassandra.	
5	Анализ данных в системе Spark. Выполнение запросов, использующих функции	
	агрегирования.	
	В результате выполнения лабораторной работы студент получает навык выполнения запросов в	
	системе Spark к данным, хранящимся в базе данных системы Cassandra.	
6	Анализ данных в системе Spark. Выявление похожих объектов.	
	В результате выполнения лабораторной работы студент получает навык сравнения документов в	
	системе Spark и выявления похожих документов.	
7	Анализ данных в системе Spark. Линейная регрессия.	
	В результате выполнения лабораторной работы студент получает навык использования алгоритма	
	линейной регрессии для прогнозирования значений данных.	
8	Анализ данных в системе Spark. Визуализация простой линейной регрессии.	
	В результате выполнения лабораторной работы студент получает навык использования алгоритма	
	линейной регрессии для прогнозирования значений данных.	

4.3. Самостоятельная работа обучающихся.

№	Вид самостоятельной работы	
Π/Π		
1	Изучение документации по системе Cassandra	
2	Подготовка к лабораторным работам	
3	Изучение учебной литературы из приведенных источников	
4	Анализ и дополнительная проработка лекционного материала	
5	Подготовка к промежуточной аттестации.	
6	Подготовка к текущему контролю.	

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Мамедли Р. Э., Казиахмедов Т. Б. Большие	https://reader.lanbook.com/book/434051#1
	данные и NoSQL базы данных: Учебное	(дата обращения: 04.12.2024) Текст:
	пособие для вузов Издательство "Лань".	электронный.
	2024. 92 c. ISBN: 978-5-507-49873-4	
2	Макшанов А. В., Журавлев А. Е.,	https://reader.lanbook.com/book/362318
	Тындыкарь Л. Н. Большие данные. Big	(дата обращения: 04.12.2024) Текст:
	Data: Учебник для вузов Издательство	электронный.
	"Лань". 2024. 188 с. ISBN: 978-5-507-47346-	
	5	

3	Ланских Ю. В., Ланских В. Г., Родионов К.	https://reader.lanbook.com/book/408566
	В. Введение в большие данные: учеб.	(дата обращения: 04.12.2024) Текст:
	пособие Вятский государственный	электронный.
	университет. 2023. 172 с.	

- 6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).
 - Научная электронная библиотека (http://elibrary.ru)
- Электронно-библиотечная система Научно-технической библиотеки МИИТ (http://library.miit.ru)
 - Википедия (https://ru.wikipedia.org)
 - Материалы по информационным технологиям (www.citforum.ru)
 - Сайт системы Cassandra (http://cassandra.apache.org)
- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).
 - Microsoft Windows
 - Microsoft Office
 - Интернет-браузер (Yandex и др.)
 - Язык программирования Python,
- Система баз данных Apach Cassandra (лицензия свободнораспространяемое ПО с открытым кодом)
- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебная аудитория для проведения учебных занятий (занятий лекционного типа, практических занятий, лабораторных работ, курсового проектирования (выполнения курсовых работ), текущего контроля и промежуточной аттестации):

- компьютер преподавателя, проектор, экран проекционный, рабочие станции студентов, маркерная доска.

Аудитория подключена к сети «Интернет»

9. Форма промежуточной аттестации:

Зачет в 3 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, доцент, к.н. кафедры «Вычислительные системы, сети и информационная безопасность»

М.А. Давыдовский

Согласовано:

Заведующий кафедрой ВССиИБ

Б.В. Желенков

Председатель учебно-методической

комиссии

Н.А. Андриянова