МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 20.03.01 Техносферная безопасность, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Технологии защиты атмосферы

Направление подготовки: 20.03.01 Техносферная безопасность

Направленность (профиль): Экологическая и промышленная

безопасность

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 41799

Подписал: заведующий кафедрой Сухов Филипп Игоревич

Дата: 10.10.2025

1. Общие сведения о дисциплине (модуле).

Целью преподавания дисциплины является формирование у обучающихся необходимых компетенций в области планирования и осуществления воздухоохранной деятельности с применением технологических решений и специального оборудования по очистке отходящих газов, образующихся в результате различных технологических процессов, от загрязняющих компонентов (аэрозолей и газообразных веществ) с учетом требований экологической и промышленной безопасности.

Задачи:

- приобретение необходимых знаний по основным теоретическим законам в области воздухоочистки и нормативным требованиям, применяемые к охране атмосферного воздуха от загрязнения, основным видам загрязняющих воздух веществ и их свойствах;
- формирование умения анализировать производственные процессы и идентифицировать те, которые связаны с загрязнением атмосферного воздуха (понимание причин возникновения источников выделения загрязняющих веществ, создающих загрязнение атмосферного воздуха);
- приобретение необходимых знаний воздухоохранной деятельности, существующих возможностях по сокращению выбросов загрязняющих веществ, основных технологических и инженерно-технических решениях, применяемых для достижения такого результата;
- формирование умения осуществлять научно обоснованный подбор оборудования по очистке отходящих газов в зависимости от заданных условий и требуемых для достижения параметров.

2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ПК-1** Проведение производственного экологического контроля и подготовка отчетности о выполнении мероприятий по охране окружающей среды;
- **ПК-2** Ведение учета показателей, характеризующих состояние окружающей среды, данных экологического мониторинга и другой документации;
- **ПК-3** Подготовка экологической документации организации в соответствии с установленными требованиями в области охраны окружающей среды и обеспечение ее своевременного пересмотра;

ПК-4 - Разработка и внедрение мероприятий, направленных на выполнение требований в области охраны окружающей среды, предупреждение возникновения чрезвычайных ситуаций природного и техногенного характера.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Уметь:

- -применять знания на практике
- -проводить оценку основных параметров физико-химических процессов защиты окружающей среды
- -правильно выбрать метод и способ очистки атмосферы, гидросферы, литосферы при выбросе и сбросе в них промышленных отходов
- -анализировать, обобщать и делать выводы по результатам исследований, внедрять результаты исследований в практику производственного процесса

Знать:

- -общие закономерности распространения загрязнителей в различных средах
- -основы физико-химических процессов, применяемых при защите окружающей среды
- -источники, способы, количества выделения загрязняющих веществ, энергии и других факторов, негативно, действующие на атмосферу
 - -конструкции аппаратов для обезвреживания газовых выбросов

Владеть:

- -навыками по обеспечению экологической безопасности
- -основными понятиями, терминами, инженерными навыками
- -принципами и методологией поиска и использования результатов научных исследований в профессиональной деятельности
- -методиками расчета эффективности процессов и аппаратов защиты человека и окружающей среды
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 3 з.е. (108 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
	Всего	Семестр №6
Контактная работа при проведении учебных занятий (всего):	80	80
В том числе:		
Занятия лекционного типа	32	32
Занятия семинарского типа	48	48

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 28 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

$N_{\underline{0}}$	Тематика лекционных занятий / краткое содержание		
Π/Π			
1	Актуальность и основные подходы к охране атмосферного воздуха		
	Рассматриваемые вопросы:		
	- Основные источники поступления загрязняющих веществ в атмосферный воздух, их виды и		
	свойства.		
	- Основные нормативы и требования к обеспечению качества атмосферного воздуха		
	Производственные процессы в промышленности и на транспорте, приводящие к значительным		
	выбросам загрязняющих веществ.		
	- Основные подходы к предотвращению и сокращению выбросов загрязняющих		
	веществ.		
	- Приоритет превентивного подхода в воздухоохранной деятельности.		
	- Взаимосвязь деятельности по охране атмосферного воздуха с другими направлениями		
	природоохранной деятельности.		
	- Основные свойства загрязняющих веществ и методы очистки и обезвреживания отходящих газов в		
	промышленности и на транспорте.		

No॒	T		
Π/Π	Тематика лекционных занятий / краткое содержание		
2	Очистка отходящих газов от аэрозолей.		
	Рассматриваемые вопросы:		
	- Аэрозоли и их виды.		
	- Основные физико-химические свойства пылей. Дисперсный состав и способы его определения.		
	Классификация пылей по дисперсности.		
	- Основные методы, используемые в пылеочистке.		
	- Эффективность пылеулавливающих устройств.Последовательня (каскадная) и параллельная		
	(групповая) схемы установки аппаратов пыле-газоочистки и расчет их эффективности.		
	- Основные аппараты и устройства сухой механической пылеочистки. Циклоны и их виды.		
	Батарейный циклон. Устройства со встречными закручивающимися потоками (ВЗП).		
	Промышленные фильтры для очистки отходящих газов.		
	- Электрофильтры: принцип действия и возможности пыле-газоочистки. Сухие и		
	мокрые электрофильтры.		
	- Мокрые пылеуловители. Различные типы скрубберов. Скруббер Вентури. Барботажно-пенные		
	пылеуловители.		
3	Основные методы очистки отходящих газов от газообразных загрязняющих		
	веществ.		
	Рассматриваемые вопросы:		
	- Абсорбционные методы. Основные типы и конструкции абсорберов.		
	- Применение абсорбционных методов для очиски отходящих газов от диоксида серы, оксидов		
	азота, моноокида углерода и других газообразных загрязнязняющих веществ.		
4	Адсорбционные и хемосорбционные методы очистки отходящих газов.		
	Рассматриваемые вопросы:		
	- Основные закономерности процесса адсорбции.		
	- Физическая и химическая адсорбция (хемосорбция).		
	- Десорбция поглощенных примесей. Основные виды применяемых сорбентов.		
	- Адсорберы: основные типы, особенности конструкции и эксплуатации.		
	- Применение адморбционных методов для очистки отходящих газов от диоксида серы, оксидов		
	азота и других газообразных веществ.		
5	Методы термической и каталитической очистки отходящих газов.		
	Рассматриваемые вопросы:		
	- Основы механизма протекания реакций гетерогенного катализа.		
	- Применение каталитических методов для очистки от оксидов азота, диоксида серы.		
	- Монооксида углерода и других газообразных загрязняющих веществ.		
	- Высокотемпературное обезвреживание газов.		

4.2. Занятия семинарского типа.

Лабораторные работы

№ п/п	Наименование лабораторных работ / краткое содержание		
1	Очистка отходящих газов от аэрозолей. Основные свойства пылей. Дисперсный		
	состав пыли и определение запыленности. Использование учебного стенда		
	«Изучение запыленности воздуха» и цифрового микроскопа.		
	В результате выполнения лабораторной работы обучающийся приобретает навыки использования		
	учебного оборудования и проведения расчетов по определению запыленности воздуха и		
	дисперсного состава пыли.		
2	Очистка отходящих газов от аэрозолей. Теоретические основы использования		
	аппаратов сухой инерционной пылеочистки и воздушных фильтров. Знакомство с		

No	Наименование лабораторных работ / краткое содержание	
п/п		
	принципом работы аппарата сухой инерционной пылеочистки и воздушного	
	фильтра с использованием учебного стенда «Методы пылеочистки».	
	В результате выполнения лабораторной работы обучающийся приобретает навыки	
	использования учебного оборудования и проведения расчетов по определению	
	параметров работы аппарата сухой инерционной пылеочистки и воздущного фильтра.	
3	Очиста отходящих газов от аэрозолей. Смачиваемость пыли. Влияние	
	поверхностно-активных веществ на смачиваемость пыли.	
	В результате выполнения лабораторной работы обучающийся приобретает навыки	
	использования учебного оборудования, определения влияния свойств жидкостей и	
	добавления в них поверхностно активных веществ на смачивание частиц пыли.	
4	Основные методы очистки отходящих газов от газообразных загрязняющих	
	веществ. Основные методы газоочистки. Знакомство с принципом работы полого	
	скруббера (газопромывателя) и адсорбера (сорбенты – активированный уголь и	
	силикагель) с использованием учебного стенда «Газоочистка».	
	В результате выполнения лабораторной работы обучающийся приобретает навыки	
	использования учебного оборудования, знакомится с применением жидкостной	
	абсорбции и твердых адсорбентов для улавливания газообразных примесей.	
5	Перенос загрязнителей в окружающей среде.	
	В результате выполнения лабораторной работы обучающийся ознакомится с методами расчета процессов переноса загрязнений в средах с помощью молекулярной или турбулентной диффузии.	
	процессов переноса загрязнении в средах с помощью молекулярной или туроулентной диффузии. Методы расчета процессов переноса загрязнений в средах с помощью молекулярной или	
	турбулентной диффузии.	
6	Теоретические основы процессов очистки сточных вод, отходящих газов и	
	утилизация твердых отходов.	
	В результате выполнения лабораторной работы обучающийся ознакомится с теоретическими	
	основами процессов очистки сточных вод, отходящих газов и утилизация твердых отходов.	
7	Теоретические основы процессов очистки сточных вод, отходящих газов и	
	утилизация твердых отходов.	
	В результате выполнения лабораторной работы обучающийся ознакомится с методами расчетов	
	процессов коагуляции и флокуляции.	
8	Теоретические основы процессов очистки сточных вод, отходящих газов и	
	утилизация твердых отходов.	
	В результате выполнения лабораторной работы обучающийся ознакомится с физическими	
	механизмами процессов флотации. Влияние краевого угла смачивания на эффективность процесса	
	флотации.	

Практические занятия

№ п/п	Тематика практических занятий/краткое содержание		
1	Актуальность и основные подходы к охране атмосферного воздуха. Общие		
	подходы к проблеме защиты атмосферного воздуха. Изучение статистической		
	информации о количестве и составе выбросов загрязняющих веществ в России и		
	улавливании загрязняющих веществ (по официальным данным Росприроднадзора		
	и Государственного доклада Министерства природных ресурсов и экологии «О		
	состоянии и охранеокружающей среды в Российской Федерации за 2020 г.»).		
	В результате выполнения практического задания обучающийся ознакомится с основными		

No			
п/п	Тематика практических занятий/краткое содержание		
	нормативными положениями и требованиями к организации воздухоохранной деятельности, а		
	также общей ситуацией с очисткой отходящих газов в РФ		
2	Очистка отходящих газов от аэрозолей. Расчет параметров пылеосадительной		
	(гравитационной) камеры.		
	В результате выполнения практического задания обучающийся ознакомится с конструкцией		
	пылеосадительной камеры и приобретет навыки расчета основных парамеров ее работы.		
3	Очистка отходящих газов от аэрозолей. Выбор и расчет параметров циклона для		
	обеспечения необходимых условий по пылеочистке.		
	В результате выполнения практического задания обучающийся ознакомится с конструкцией		
	наиболее распространенных типов циклонных аппаратов и приобретет навыки расчета основных		
	парамеров их работы		
4	Очистка отходящих газов от аэрозолей. Расчет параметров рукавного фильтра.		
	В результате выполнения практического задания обучающийся ознакомится с конструкцией		
	наиболее распространенных типов промышленных воздушных фильтров и приобретет навыки		
	расчета основных парамеров работы рукавного фильтра		
5	Очистка отходящих газов от аэрозолей. Расчет параметров скруббера Вентури.		
	В результате выполнения практического задания обучающийся ознакомится с конструкцией		
	скруббера Вентури и приобретет навыки расчета основных парамеров его работы		
6	Основные методы очистки отходящих газов от газообразных загрязняющих		
	веществ. Расчет параметров пенного газопромывателя.		
	В результате выполнения практического задания обучающийся ознакомится с конструкцией		
	пенного газопромывателя и приобретет навыки расчета основных парамеров его работы		
7	Общие подходы к проблеме защиты окружающей среды.		
	В результате выполнения практического задания обучающийся ознакомится с методами защиты		
	окружающей среды.		
8	Перенос загрязнителей в окружающей среде.		
	В результате выполнения практического задания обучающийся изучит теории полуэмпирических		
	теорий турбулентности, физики конвективных и адвентивных потоков переноса загрязнителей,		
	взаимосвязи статистического и феноменологического подходов к математическому моделировани		
	процессов распространения загрязнителей		

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Изучение литературы
2	Подготовка к промежуточной аттестации.
3	Подготовка к текущему контролю.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ π/π	Библиографическое описание	Место доступа
1	Общая экология : учебник и практикум для вузов —	https://urait.ru/book/obschaya-
	Москва: Издательство Юрайт, 2023. — 190 с. —	ekologiya-513545

	(Высшее образование). — ISBN 978-5-9916-9777-4.	
	` '	
	Павлова Е. И., Новиков В. К. Учебник Юрайт, 2023	
1	Экология транспорта: учебник и практикум для вузов	https://urait.ru/book/ekologiya-
	 6-е изд., перераб. и доп. — Москва : Издательство 	transporta-511072
	Юрайт, 2023. — 418 с. — (Высшее образование). —	
	ISBN 978-5-534-12793-5. Павлова Е. И., Новиков В. К.	
	Учебник Юрайт, 2023	
2	Экология: учебник и практикум для вузов — 2-е изд.,	https://urait.ru/book/ekologiya-
	перераб. и доп. — Москва : Издательство Юрайт,	534972
	2024. — 448 с. — (Высшее образование). — ISBN	
	978-5-534-18400-6. Н. Н. Митина, Б. М. Малашенков	
	Учебник Юрайт, 2023	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (https://www.miit.ru/).

Научно-техническая библиотека РУТ (МИИТ(http:/library.miit.ru).

Образовательная платформа «Юрайт» (https://urait.ru/).

Общие информационные, справочные и поисковые «Консультант Плюс», «Гарант».

Электронно-библиотечная система издательства (http://e.lanbook.com/). Электронно-библиотечная система ibooks.ru (http://ibooks.ru/).

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Для проведения занятий по дисциплине необходимо наличие ПО Microsoft Office.

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Для проведения учебных занятий требуется аудитория, оборудованная мультимедийным оборудованием (проектор, экран, ноутбук, звук).

9. Форма промежуточной аттестации:

Зачет в 6 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

старший преподаватель кафедры

«Химия и инженерная экология» Е.Г. Асманкин

Согласовано:

Заведующий кафедрой ХиИЭ Ф.И. Сухов

Председатель учебно-методической

комиссии Н.А. Андриянова