МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы магистратуры по направлению подготовки 09.04.03 Прикладная информатика, утвержденной директором РУТ (МИИТ) Покусаевым О.Н.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Технология разработки ПО

Направление подготовки: 09.04.03 Прикладная информатика

Направленность (профиль): ІТ-инженер ВСМ

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 2017

Подписал: заместитель руководителя Ефимова Ольга

Владимировна

Дата: 03.06.2025

1. Общие сведения о дисциплине (модуле).

Цели дисциплины:

- формирование у студентов системного представления о современных технологиях разработки программного обеспечения;
- освоение инструментов и подходов к разработке, сопровождению и автоматизации процессов жизненного цикла ПО;
- развитие практических навыков использования Linux, Git, Docker и брокеров сообщений.

Задачи дисциплины:

- изучить архитектуру и принципы работы современных операционных систем и инструментов для разработки ПО;
- овладеть навыками работы с системой контроля версий Git и платформой GitHub;
- освоить методы контейнеризации и автоматизации развёртывания приложений;
 - научиться работать с брокерами сообщений (RabbitMQ, Kafka);
 - изучить базовые подходы к DevOps и CI/CD;
- применить изученные технологии на практике в рамках комплексного проекта.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-1** Способен самостоятельно приобретать, развивать и применять математические, естественнонаучные, социально-экономические и профессиональные знания для решения нестандартных задач, в том числе в новой или незнакомой среде и в междисциплинарном контексте;
- **ОПК-2** Способен разрабатывать оригинальные алгоритмы и программные средства, в том числе с использованием современных интеллектуальных технологий, для решения профессиональных задач;
- **ОПК-4** Способен применять на практике новые научные принципы и методы исследований.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- жизненный цикл программного обеспечения и современные подходы к его реализации;
- принципы работы Linux, систем контроля версий, контейнеризации и брокеров сообщений;
 - основы DevOps и непрерывной интеграции/развёртывания.

Уметь:

- использовать инструменты Linux, Git, Docker, RabbitMQ и Kafka для разработки ПО;
 - организовывать взаимодействие между микросервисами;
 - настраивать процессы автоматической сборки и тестирования.

Владеть:

- практическими навыками командной разработки;
- средствами обеспечения воспроизводимости и масштабируемости приложений;
 - инструментами мониторинга и деплоя.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 6 з.е. (216 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
тип учесных занятии		Семестр №1
Контактная работа при проведении учебных занятий (всего):	48	48
В том числе:		
Занятия лекционного типа	16	16
Занятия семинарского типа	32	32

3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 168 академических часа (ов).

- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

- 30				
No	Тематика лекционных занятий / краткое содержание			
п/п	Tomornia isolique inizati summini, ilpunico cogreptioni			
1	Введение в технологии разработки программного обеспечения			
	Рассматриваемые вопросы:			
	– основные этапы жизненного цикла ПО;			
	– методологии разработки (Waterfall, Agile, DevOps);			
	– обзор современных стеков технологий.			
2	Архитектура и базовые команды Linux			
	Рассматриваемые вопросы:			
	– структура OC Linux;			
	файловая система и процессы;			
	– командная строка и скрипты.			
3	Работа в командной строке Linux			
	Рассматриваемые вопросы:			
	– основные команды bash;			
	– работа с файлами, правами доступа;			
	– пакетный менеджмент.			
4	Системы контроля версий: Git и GitHub			
	Рассматриваемые вопросы:			
	– история изменений, фиксация, коммиты;			
	– работа с ветками;			
	– организация командной работы.			
5	Продвинутые возможности Git			
	Рассматриваемые вопросы:			
	– слияние, ребейз, работа с конфликтами;			
	– submodules и Git hooks;			
	– CI/CD-интеграции.			
6	Контейнеризация приложений: Docker			
	Рассматриваемые вопросы:			
	– контейнеры vs виртуальные машины;			
	– образы, слои, Dockerfile;			
	– docker-compose.			
7	Брокеры сообщений: RabbitMQ и Kafka			
	Рассматриваемые вопросы:			
	– роль брокеров в архитектуре ПО;			
	– очереди сообщений и pub/sub;			
	настройка и примеры.			

№ п/п	Тематика лекционных занятий / краткое содержание
8	DevOps и автоматизация разработки
	Рассматриваемые вопросы:
	– принципы DevOps-культуры;
	– инструменты CI/CD;
	– реализация пайплайнов.

4.2. Занятия семинарского типа.

Практические занятия

	практические занятия
№ п/п	Тематика практических занятий/краткое содержание
1	Основы работы в Linux
1	В результате выполнения практической работы студенты научатся использовать базовые команды
	Б результате выполнения практической расоты студенты научатся использовать оазовые команды Linux.
2	Работа с файловой системой и правами
2	В результате выполнения практической работы студенты научатся управлять файлами и правами
	доступа.
3	Написание скриптов Bash
	В результате выполнения практической работы студенты создадут и запустят простые скрипты.
4	Установка и настройка Git
	В результате выполнения практической работы студенты установят Git и создадут локальный
	репозиторий.
5	Работа с удалёнными репозиториями
	В результате выполнения практической работы студенты научатся использовать GitHub.
6	Ветвление и слияние в Git
	В результате выполнения практической работы студенты освоят работу с ветками и разрешением
	конфликтов.
7	CI/CD-интеграция в Git
	В результате выполнения практической работы студенты подключат и запустят автоматическую
	сборку.
8	Установка и работа с Docker
	В результате выполнения практической работы студенты создадут и запустят контейнер с
	приложением.
9	Создание Dockerfile и сборка образов
	В результате выполнения практической работы студенты создадут Dockerfile и соберут
10	собственный образ.
10	Docker Compose
	В результате выполнения практической работы студенты реализуют многоконтейнерное окружение.
11	Основы RabbitMQ
11	В результате выполнения практической работы студенты поднимут сервер RabbitMQ и реализуют
	обмен сообщениями.
12	Основы Kafka
	В результате выполнения практической работы студенты запустят Kafka и протестируют передачу
	сообщений.
13	Интеграция брокера сообщений с приложением
	В результате выполнения практической работы студенты реализуют микросервисное
	взаимодействие через брокер.

№ п/п	Тематика практических занятий/краткое содержание
14	Основы DevOps и пайплайны
	В результате выполнения практической работы студенты изучат структуру пайплайна и создадут
	шаблон.
15	Разработка проекта с использованием Git, Docker и брокера сообщений
	В результате выполнения практической работы студенты объединят изученные технологии в
	проект.
16	Итоговая защита проекта
	В результате выполнения практической работы студенты представят рабочее решение с
	автоматизацией разработки.

4.3. Самостоятельная работа обучающихся.

№	Рид ормостоятон ной роботи
Π/Π	Вид самостоятельной работы
1	Подготовка к практическим занятиям
2	Работа с лекционным материалом
3	Самостоятельное изучение рекомендуемой литературы
4	Выполнение курсовой работы.
5	Подготовка к промежуточной аттестации.
6	Подготовка к текущему контролю.

- 4.4. Примерный перечень тем курсовых работ
- 1.Создание CI/CD пайплайна для Python-приложения.
- 2. Разработка микросервисного проекта с использованием Docker и Kafka.
 - 3. Разработка и деплой REST API с контейнеризацией в Docker.
- 4. Сравнение производительности RabbitMQ и Kafka в распределённых системах.
 - 5. Построение системы логирования и мониторинга контейнеров.
 - 6.Организация взаимодействия сервисов через брокеры сообщений.
 - 7. Разработка и автоматизация деплоя с помощью GitHub Actions.
 - 8.Внедрение системы управления версиями в командной разработке.
 - 9.Интеграция Docker и CI/CD в студенческом проекте.
 - 10. Разработка DevOps-архитектуры для учебного микросервиса.
- 5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

3.0		
No	Библиографическое описание	Место доступа
п/п		-
1	Малахов, С. В. Принципы работы операционной	https://e.lanbook.com/book/463574
	системы Linux. Bash-скрипты: учебное пособие /	
	С. В. Малахов, Д. О. Якупов. — Самара : ПГУТИ,	
	2024. — 134 c. — ISBN 978-5-907336-50-6	
2	Курячий, Г. В. Операционная система Linux: Курс	https://e.lanbook.com/book/1202
	лекций : учебное пособие / Г. В. Курячий, К. А.	
	Маслинский. — Москва : ДМК Пресс, 2010. —	
	348 c. — ISBN 978-5-94074-591-4.	
3	Эделман, Д. Автоматизация программируемых	https://e.lanbook.com/book/123708
	сетей : руководство / Д. Эделман, С. С. Лоу, М.	
	Осуолт; перевод с английского А. В. Снастина. —	
	Москва : ДМК Пресс, 2019. — 616 с. — ISBN 978-	
	5-97060-699-5.	
4	Кочер, П. С. Микросервисы и контейнеры Docker:	https://e.lanbook.com/book/123710
	руководство / П. С. Кочер; перевод с английского	
	А. Н. Киселева. — Москва : ДМК Пресс, 2019. —	
	240 c. — ISBN 978-5-97060-739-8.	
5	Баланов, А. Н. Построение микросервисной	https://e.lanbook.com/book/456920
	архитектуры и разработка высоконагруженных	
	приложений : учебное пособие для вузов / А. Н.	
	Баланов. — 2-е изд., стер. — Санкт-Петербург:	
	Лань, 2025. — 244 с. — ISBN 978-5-507-52652-9.	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (https://www.miit.ru/);

Официальный сайт Минтранса России (https://mintrans.gov.ru/);

Научно-техническая библиотека РУТ (МИИТ) (http:/library.miit.ru);

Информационный портал Научная электронная библиотека eLIBRARY.RU (www.elibrary.ru);

Образовательная платформа «Открытое образование» (https://openedu.ru);

Общие информационные, справочные и поисковые системы «Консультант Плюс», «Гарант»;

Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/);

Электронно-библиотечная система ibooks.ru (http://ibooks.ru/);

Электронно-библиотечная система «Академия» (http://academia-moscow.ru/);

Электронно-библиотечная система «BOOK.ru» (http://www.book.ru/); Электронно-библиотечная система «ZNANIUM.COM» (http://www.znanium.com/)

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Microsoft Internet Explorer (или другой браузер) Операционная система Microsoft Windows Microsoft Office Visual studio Code

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебные аудитории для проведения учебных занятий, оснащенные компьютерной техникой и наборами демонстрационного оборудования.

9. Форма промежуточной аттестации:

Курсовая работа в 1 семестре. Экзамен в 1 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

менеджер А.А. Кочурков

Согласовано:

Заместитель руководителя О.В. Ефимова

Председатель учебно-методической

комиссии Д.В. Паринов