МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы специалитета по специальности 23.05.03 Подвижной состав железных дорог, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Транспортные системы с магнитным подвесом и линейным электроприводом

Специальность: 23.05.03 Подвижной состав железных дорог

Специализация: Высокоскоростной наземный транспорт

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5214

Подписал: заведующий кафедрой Пудовиков Олег

Евгеньевич

Дата: 03.05.2025

1. Общие сведения о дисциплине (модуле).

Целями освоения учебной дисциплины "Транспортные системы с магнитным подвесом и линейным электроприводом" является:

- формирование у обучающихся определенного состава компетенций, которые базируются на характеристиках будущей профессиональной деятельности: дать необходимый объем современных знаний о перспективных видах и технологических особенностях высокоскоростного транспорта с магнитным подвешиванием, направлениях его применения;
- изучение систем и видов магнитного подвешивания, линейного электропривода, конструкций подвижного состава, методов расчетов систем электромагнитного и электродинамического подвеса, синхронных и асинхронных линейных электродвигателей для организации движения транспортного средства без механического контакта с путевым полотном.

Задачами освоения учебной дисциплины "Транспортные системы с магнитным подвесом и линейным электроприводом" является:

- освоение принципа действия транспортных систем с магнитным подвесом и линейным электроприводом;
- освоение конструкций подвижного состава и путевого полотна в системах электромагнитного и электродинамического подвеса, тяговоподъемных модулей разных систем;
- освоение динамики транспортных средств с магнитным подвешиванием и линейными двигателями;
- освоение сверхпроводимости и криогенной техники, применяемой в перспективных транспортных системах;
- освоение методов расчета систем электромагнитного и электродинамического подвеса, линейных асинхронных и синхронных двигателей;
- освоение современных состояний разработок и внедрения транспортных систем с магнитным подвешиванием для высокоскоростного движения;
- освоение действующих транспортных системам с магнитным подвешиванием и линейным электроприводом для городского, пригородного и других видов транспорта.

2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ПК-9 - Имеет навык выполнять обоснование параметров конструкции

конструкций и систем подвижного состава высокоскоростного наземного транспорта.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- основные виды и конструкции систем магнитного подвешивания и линейных электродвигателей;
- конструкции подвижного состава и путевого полотна в системах электромагнитного и электродинамического подвеса;
- особенности динамики подвижного состава транспортного с магнитным подвешиванием и линейными двигателями;
- явление сверхпроводимости, основные сверхпроводящие материалы, условия обеспечения сверхпроводящего состояния, базовые элементы криогенной техники, конструкции бортовых сверхпроводящих модулей.
- методы расчета систем электромагнитного и электродинамического подвеса, линейных асинхронных и синхронных двигателей;
- действующие транспортные системы с магнитным подвешиванием для высокоскоростного пассажирского движения и городского применения.

Уметь:

- правильно определять области применения различных систем магнитного подвешивания и линейного электропривода для транспортных целей;
- определять перспективные конструкции и компоновки путевой структуры и подвижного состава систем с магнитным подвешиванием и линейными электродвигателями;
- определить основные конструктивные и электромеханические показатели системы магнитного подвеса

Владеть:

прикладным программным обеспечением для построения систем управления электрическими машинами и электроприводом, модельноориентированным подходом к проектированию электроприводов и систем управления

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 3 з.е. (108

академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
	Всего	Семестр №8
Контактная работа при проведении учебных занятий (всего):	64	64
В том числе:		
Занятия лекционного типа	32	32
Занятия семинарского типа	32	32

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 44 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

№ п/п	Тематика лекционных занятий / краткое содержание
1	Принципы построения транспортных систем с магнитным подвешиванием и
	линейными двигателями.
	Рассматриваемые вопросы:
	- электромагнитный (ЭМП) и электродинамический подвес (ЭДП);
	- линейные асинхронные (ЛАД) и синхронные (ЛСД) двигатели;
	- области применения.
2	Раздельные и комбинированные системы магнитного подвеса и тяги.
	Рассматриваемые вопросы:
	- тягово-подъемные модули;
	- особенности системы поперечной стабилизации и динамики подвижного состава с МП и ЛД.

$N_{\underline{0}}$	Томотика докумони ву занатий / краткое со поручание		
Π/Π	Тематика лекционных занятий / краткое содержание		
3	Расчет сил подвеса и левитации в электромагнитной и электродинамической		
	системах.		
	Рассматриваемые вопросы:		
	- энергетический подход;		
	- левитационное качество в различных системах подвеса		
4	Основы расчета линейных асинхронных и синхронных двигателей.		
	Рассматриваемые вопросы:		
	- силы сопротивления движению;		
	- тяговые характеристики;		
	- энергетические показатели эффективности транспортных систем с МП и ЛД.		
5	Низко- и высокотемпературная сверхпроводимость и ее применение в транспортных		
	системах с МП и ЛД.		
	Рассматриваемые вопросы:		
	- понятие сверхпроводимости (СП), СП-материалы, условия обеспечения СП состояния.		
6	Криогенная техника.		
	Рассматриваемые вопросы:		
	- Базовые элементы криогенной техники;		
	- ожижители и рефрижераторы;		
	- конструкции бортовых СП тягово-подъемных модулей, бортового криогенного обеспечения.		
7	Транспортные системы с МП и ЛД для городского и пригородного сообщения.		
	Рассматриваемые вопросы:		
	- монорельсовые линии с МП и ЛД;		
	- путевая структура, подвижной состав и тягово-левитационные модули, линейный электропривод, система управления движением		
8	Модельно ориентированный подход к проектированию магнитолевитационных		
8			
	транспортных систем.		
	Рассматриваемые вопросы:		
	- моделирование подвижного состава и тягово-левитационных модулей; - оценка динамических свойств, систем подвеса и линейного электропривода.		
	оценка динамических своиств, систем подвеса и линеиного электропривода.		

4.2. Занятия семинарского типа.

Лабораторные работы

№ п/п	Наименование лабораторных работ / краткое содержание	
1	Ознакомление с техникой безопасности при работе в лаборатории. Изучение	
	конструкций тягово-подъемного модуля монорельсовой транспортной системы.	
	Рассматриваемые вопросы:	
	- изучение технических требований и конструкций подвижного состава электромагнитной и	
	электродинамической систем подвеса.	
2	Экспериментальное определение сил электромагнитного подвеса.	
	Рассматриваемые вопросы:	
	- расчет магнитной цепи и силовых характеристик электромагнита подвеса.	
3	Определение тягово-энергетических характеристик линейного асинхронного	
	двигателя	
	Рассматриваемые вопросы:	
	- расчет параметров схемы замещения и оценка тягово-левитационных свойств.	

№	Наименование лабораторных работ / краткое содержание		
п/п			
4	Моделирование системы управления электромагнитным подвесом.		
	Рассматриваемые вопросы:		
	- разработка одноточечной модели электромагнитного подвеса и построение силовых характеристик		
	магнита.		
5	Моделирование динамики тягово-подъемного модуля магнитолевитационной		
	транспортной системы. Рассматриваемые вопросы:		
	- разработка многоточечной системы электромагнитного подвеса и построение силовых		
	характеристик.		
6	Моделирование динамики подвижного состава с электромагнитным подвесом.		
	Рассматриваемые вопросы:		
	- моделирование динамических свойств тягово-подъемного модуля и модели двухвагонного		
	подвижного состава.		
7	Изучение технологии работы и обслуживания монорельсовой транспортной системы		
	Расссматриваемые вопросы:		
	- Общее построение транспортной системы, система электроснабжения и конструкция контактной		
	сети, управление движением, диспетчерская служба, управление тягой и торможением.		

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы	
1	Подготовка к лабораторным работам.	
2	Работа с лекционным материалом.	
3	Освоение программного комплекса для моделирования систем магнитного подвеса и	
	линейного электропривода.	
4	Подготовка к промежуточной аттестации.	
5	Подготовка к текущему контролю.	

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Наземный транспорт на новых технологических принципах В.А. Винокуров, А.А. Галенко, А.Т. Горелов, А.Н. Фиронов Однотомное издание МИИТ, 2004	НТБ (уч.3); НТБ (фб.); НТБ (чз.1); НТБ (чз.2)
2	Основы сверхпроводимости и ее применение для транспортных систем с магнитным подвешиванием и линейными электродвигателями А.Н.Фиронов; МИИТ. Каф. "Электрические машины" Однотомное издание МИИТ, 2001	НТБ (уч.3); НТБ (фб.); НТБ (чз.1); НТБ (чз.2); НТБ (чз.4)
3	Машиностроение: Энциклопедия. В 40 т. П.С.	НТБ (ЭЭ); НТБ (уч.6); НТБ

		,
	Анисимов, В.А. Винокуров, В.И. Воробьев; Ред. Б.А.	(фб.); НТБ (чз.1); НТБ (чз.2);
	Лёвин, П.С. Анисимов, Отв. ред. К.С. Колесников,	НТБ (чз.4)
	Предс. ред. совета К.В. Фролов; Под Ред. Б.А. Лёвин ;	
	Отв. ред. К.С. Колесников ; Предс. ред. совета К.В.	
	Фролов Однотомное издание Машиностроение, 2008	
4	Высокоскоростной наземный транспорт с линейным	НТБ (фб.); НТБ (чз.1)
	приводом и магнитным подвесом В.А. Винокуров,	
	В.И. Бочаров, В.Д. Нагорский и др.; Ред.: В.И.	
	Бочаров, В.Д. Нагорский; Под Ред. В.И. Бочаров, В.Д.	
	Нагорский Однотомное издание Транспорт, 1985	
5	Магнитолевитационный транспорт: научные	URL:
	проблемы и технические решения / под редакцией Ю.	https://e.lanbook.com/book/71998
	Ф. Антонова, А. А. Зайцева. — Москва:	(дата обращения: 30.04.2025).
	ФИЗМАТЛИТ, 2015. — 628 с. — ISBN 978-5-9221-	— Режим доступа: для авториз.
	1627-5. — Текст: электронный // Лань: электронно-	пользователей.
	библиотечная система.	
6	Подвижной состав железных дорог / П. С. Анисимов,	URL:
	В. А. Винокуров, В. И. Воробьев, А. А. Галенко. —	https://e.lanbook.com/book/793
	Москва : Машиностроение, [б. г.]. — Том 4 — 2008.	(дата обращения: 30.04.2025).
	— 656 с. — ISBN 978-5-217-03384-3. — Текст :	— Режим доступа: для авториз.
	электронный // Лань : электронно-библиотечная	пользователей.
	система.	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Информационный портал Экспонента (https://exponenta.ru/);
/);научная электронная библиотека eLIBRARY.RU (www.elibrary.ru)
Научно-техническая библиотека РУТ (МИИТ) (http://library.miit.ru)
международный Совет по магнитной левитации
https://www.maglevboard.net/en/

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Требуется лицензионное программное обеспечение MATLAB 2020 с полны комплектом приложений Simulink, Simscape, а также полный комплект MicrosoftOffice (Word, Excel, PowerPoint, Visio, MSProject)

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Лабораторные стенды по исследованию систем электромагнитного подвеса и линейного тягового электропривода. Прикладное программное обеспечение.

9. Форма промежуточной аттестации:

Экзамен в 8 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, доцент, к.н. кафедры «Электропоезда и локомотивы»

А.Н. Фиронов

Согласовано:

Заведующий кафедрой ЭиЛ

О.Е. Пудовиков

Председатель учебно-методической

комиссии С.В. Володин